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CHAPTER 1

INTRODI TION

1.1 The Conceptual Framework

The purpose of this investigation is to study

organizations, their structure, and their development from

the viewpoint of general systems theory. In general, organi-

zational structure is characterized by

1. A division of responsibility among organiza-
tional subunits

2. The subunits, means of exercising these
responsibilities

3- Measures of the subunits, performances

4. Means of signalling between subunits to
indicate actions to be taken.

The responsibility which is divided is one of controlling

a process so that some useful task is accomplished as the

process unfolds. Item 2, then, includes the manner in which

control actions are transmitted to effect the evolution of

the process.

The theory of self-organizing systems is con-

cerned with systems which are capable of modifying their own

structure. This theory can be of value in operations research

by supplying masures of organizational efficiency and

mathematical models of changes in the structure of organi-

1i
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zationso Although reorganization has been recognized (2 ) as

a common method of attacking organizational inefficiency, the

study of structural changes in organizations, ioeo "organization

theory," is mostly qualitative in character. An effective

theory of self-organizing systems would contribute substan-

tially towards quantifying organization theory I
Two different types of self-organizing systems

are discussed by Mesarovic,(17) causal and teleological.

Causal self-organizing systems are "preprogrammed" to change

their structure in response to certain stimuli. Teleological

self-organizing systems, on the other hand, have a specified

goal or purpose§ the structure modifications are carried out

by the system itself so as to pursue this goal as effectively

as possible. The behavior of a teleological self-organizing

system is Durposeful; that is, it involves a goal-oriented

choice of a particular structure from a set of possible struc-

tureso Since operations research is concerned with purposeful

systems, we will confine our study to teleological self-

organizing systems0

One of the difficulties encountered in the study

of such systems is the absence of an ordering relation defined

on the set of all possible structures of the system. Since

organizations are themselves teleological self-organizing
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systems, this difficulty may have contributed to the sparsity

of quantification in organization theory. The main task of

this thesis is to develop such an ordering relation, so that

the system will have a basis for determining the "best" struc-

ture under which to operate.

The conceptual framework within which we will

study teleological self-organizing systems is that of a "multi-

level, multi-goal (mLnG)" system. In the mLnG representation

considered in this thesis, the researcher has complete know-

ledge* of the components and their interactions. These compon-

ents are

(1) transformation elements
(2) goal-seeking elements.

Elements of type (1) specify a set of transitions on a set of

operands into a set of transformso(5 ) For example, the trans-

formation T(a-4b, b-4c, c- a), effects the transition

cab-0abc, from the operand ?'cab" to the transform fabc."

Consider a set S of transformation elements,

each member of S acting on the same set of operands. Elements

of type (2) are assumed to have two capabilities-

*As opposed to the "black box problem,,t where an
experimenter attempts to deduce the contents of some unknown
system by adjustment and measurement of its inputs and out-
puts, respectively.
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(i) selection of a particular member of S

(ii) ,,influencing,, another goal-seeking element
in its choice of a particular member of S.*

Also, goal-seeking elements have a purpose attributed to them.

The degree of success of achievement of this purpose depends

on the transforms of the operands resulting from the trans-

formation selected. The reader is reminded that we are not

concerned with detecting the purpose; the assumption will be

made that a well-defined purpose exists for each goal-seeking

element in the system.

1.2 Scope and Outline of the Investigation

In the sequel, we will be concerned with the

situation where the responsibility for choosing a transforma-

tion from the set S is divided among more than one goal-

*As an example, let S consist of the two trans-
formations Tl(a- b, b-pc, c-4a) and T 2 (a--c, b-tb, c-4a),

and-the system be composed of S and a goal-seeking element

G1 4 If the purpose of the goal-seeking element G1 is to

achieve the result "acbt, from the operand ,,cabp,, clearly T 2 is

the transformation it should choose. If we introduce another
goal-seeking element G2 into the system, having the capability

to alter Gl ts goals and with the purpose of achieving the

result #Iabaca" from the operand .cacbc,It then G2 should change

Gl tsdesired result to ,tabco, in order to cause G1 to select
T1



seeking element with the capability of type (i) noted above.

The details of how this is contrived are deferred until the

next chapter; there, we will construct our system so that the

contribution which each goal-seeking element makes towards

selection of a particular member of S affects the degree of

achievement of the goals of all the elements responsible for

the choice in addition, we will be interested in hierarchical

arrangements of goal-seeking elements, where the group of

goal-seeking elements with the divided responsibility described

above are influenced by goal-seeking elements having the

capability (ii) noted earlier.

The popular example of the thermostat-furnace

system serves well to illustrate the concept of a multi-

level, multi-goal system, as well as how the goals of the

individual elements will be assumed to affect each other. We

imagine a large apartment house, where each individual apdrt-

ment has its own thermostat=cohtrolled furnace. The apartment

house is single-storied and the walls between apartments are

quite thin, so that the thermal diffusivity between apartments

is high enough for the temperature in each apartment to be

affected by the temperatures in adjacent apartments. Each

apartment dweller knows none of his neighbors, so that these

heat sources or sinks are lumped with the environmental dis-
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turbances, i.e. outside air temperature; thus, there are no

abnormal behavioral consequences present, such as an apartment

dweller being willing to undergo extreme discomfort in order

to inflict an unusual disturbance on his neighbor.

In each apartment, the thermostat can be thought j
of as choosing an element from the set of transformations

composed of the two elements,

1. cold air- cold air,

2. cold air--hot air,

in order to achieve its goal of maintaining a level of tem-

perature in a room. The set of transformations from the

over-all viewpoint, that is, for the system composed of all

the thermostats and furnaces in the building, is

cold air---.*Y I by thermostat No. 1

cold air4---Y 2 by thermostat No. 2

cold air--->YN by thermostat No. N

where the Y ts assume all combinations of the values "coldj

air" or "hot air" as the subscript i ranges over its indi-

cated values. This is an example of lING control.

The occupants of these apartments control their

individual furnaces from the second level, by setting the

goals of the thermostats. The system composed of the furnaces,
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thermostats, and apartment dwellers is a 2L2:JG system. If the

apartment house has a "house physician," who prescribes a

different room temperature to each tenant (the goal of the

house physician being to keep the tenants as healthy as

Dossible), inclusion of this individual defines a 3L(2N+l)G

system. The physician indirectly exerts control on all the

furnaces down through the tenant-thermostat hierarchy.

The idea of a "state of equilibrium" will be needed

in the sequel. The systems which we will study in this and

succeeding chapters will be dynamic systems, characterized at

a particular time t by the values of a finite set of numeri-

cal quantities xl(t), x2 (t), 6oo, xs(t). These quantities,

called 1,state variables," constitute the components of a vector

x(t), the state vector** The ?'line of behavior, of a dynamic

system is a trajectory in s-dimensional space, governed by

differential equations if changes occur continuously in time,

or by difference equations if changes occur at discrete times,

to, to + -t, cc., to + net, . In the continuous case, if

the state vector remains constant over a non-zero interval of

time, however small, that state is a state of equilibirumo

In the discrete case, a state of equilibrium is characterized

*An underlined quantity denotes a vector through-
out this thesis.
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by the equation x(tl+Adt) = x(tl) . In either case, a state

of equilibrium demonstrates the property of being unchanging

in time. This investigation will be confined to the discrete

case.ef

Notice that, because of the way we look at the

system, i.e. microscopically, when the entire system is in a

state of equilibrium, each element composing the system is

also in a state of equilibrium. That is, each part of the

system is in a state of equilibrium in the conditions provided

by the other parts. One can also demonstrate the converse

statement as Ashby(5 ) does, in order to arrive at the result:

the whole system is at a state of equilibrium if and only if

each part is at a state of equilibrium in the conditions pro-

vided by the other parts.

Control of a discrete dynamic system is a matter

of selecting a transformation element from the set of such

elements, i.e* exerting a "control action," at each transition

so that the behavior is in some sense best. In the mLnG

approach considered here, a performance measure is associated

with each goal-seeking element.

The mLnG systems considered in this investigation

have a single highest-level or "apex" goal-seeking element;
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its goal is considered to be the over-all system goal. This

element will always have the capability of type (ii).* We

will assume the apex unit has all the information to determine

the over-all optimal control law, but because of its capabilities,

must influence other goal-seeking elements to implement it.

The position of a structure in the ranking of a

structure set under the ordering relation (mentioned in the

previous section) to be developed is determined by the effi-

ciency of the lower level units in synthesizing the optimal

control law when operating in that structure. In order to

illustrate this, assume that in a mLnG system;

1- The lower level goal-seeking elements are
collectively exerting control by engaging in

a temporal "action-counteraction"( 3 ) type of
interplay in an attempt to arrive at a state
of equilibrium, where the action of each unit
is best under the conditions imposed by the
other units.

2. The goal-seeking element at the apex has the
ability to influence** these lower-level ele-
ments so that their collective equilibrium
control actions coincide with the optimal
control rule from the over-all viewpoint.

*mLnG systems with this characteristic have been
termed 19indirect intervention" systems by Mesarovio (17,1)

** In order to maintain autonomy of the lower-level
goal-seeking elements, this will not be in the form of a
"directive" as to what control action to apply.
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3. The rate at which the interplay described in
(1) above approaches equilibrium is at least

partially determined by the structure under

which the lower-level goal-seeking elements
operate.o

As long as the interplay described in (1) is in the "transient

phase," because of (2), the over-all optimal control law is

not being achieved. Because of (3), we can rank the struc-

tures according to how well this control law is approximated;

a comparison of two structures would lead to a designation of

the one with the higher rate of convergence as the better.

For, this would assure arrival at equilibrium, and hence

optimal control, in the smaller amount of time.

Suppose we allow the highest level goal-seeking

element in a mLnG system the additional (to the type (ii) cap-

ability already assumed) capability to change the existing

structural arrangement of the lower level elements. With this

capability and the method of ranking structures described

above, this system displays behavior which we would classify

as "self-organizing ." The goal-seeking element at the highest

level can alter the structure so as to "select" a structure

from a set of different possible structures .belowl it. This

behavior is also purposeful, in that the criteria of choice

assures the best approximation to the optimal control lawg

i~e. is "goal-orientedit ; thus, under the assumptions made in
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the previous paragraph, we would have a teleological self-

organizing system.

In the next chapter we will formulate a general

mathematical framework within which we shall quantify some

of the ideas discussed above. Chapter IT also gives defini-

tions of the concepts which will be employed in this thesis.

Chapters III through VI develop the ideas dis-

cussed above for an important* special case, a linear system

with a quadratic loss function In Chapter III the optimal

control law is derived. Chapter IV is concerned with the

action-counteraction interplay between two goal-seeking ele-

ments and Chapter V discusses how a higher-level unit uses its

influence to effect optimal control out of this interplay.

Chapter VI is concerned with developing a self-organizing

system in the manner indicated in some earlier remarks of

this chapter.

Chapter VIT gives the summary and conclusions.

since it lends itself easily to analytic treat-

ment



CHAPTER II

MATHEMATICAL REPRESENTATION AND DEFINITION

2.1 Introduction j
In this chapter a mathematical representation of

an abstract multi-level, multi-goal (mLnG) systen is con-

structed. As we mentioned in Chapter I, these systems are

composed of two types of elements, transformation elements

and goal-seeking elements; thus, mathematical attributes and

relationships will be imputed to these two types of elements.

The mathematical arguments throughout this and

later chapters will be treated so that the rigorous aspects,

such as existence of solutions, interchange of limits, etc.,

will be omitted.

This chapter also serves to define some of the

concepts and specify some of the notation utilized in later

chapters.

2.2 Notational Conventions

In this and succeeding chapters, finite sequences

of column vectors will be represented by the upper case letter

corresponding to the lower case designation of the elements

of the sequence; thus, M denotes m(l), m(2), ... , (T),

where T is finite. Subscripts common to the elements of

12
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such a sequence will be so indicated by appending them to the

upper case designation; thus Xi denotes xi(l), xi( 2), ...

xi(T)o

We will have occasion to form column vectors by

"stacking", the elements of finite sequences of vectors. This

is denoted by

z. = z(1) z(2) ,.. z(T)J.

The symbol / denotes transposition of vectors and matrices.

Note that z above determines a point in sT-

dimensional euclidean space. This correspondence between

finite sequences of vectors and points in multi-dimensional

space will be utilized often in the sequel.

2.3 Dynamical Representation and Control

The core of the mathematical representation con-

sists of a scheme that explains the trajectory or temporal

behavior of the point determined by the state vector of the

system, x(t) =[xl(t), x2 (t), '". xs(t)], in s-dimensional

euclidean space,

Ax(t) = f_[ (t), r(t), Z(tj , x(O) (2.1)

where A is the forward difference operator in the discrete

case and the time derivative in the continuous case. The

vector functions m(t) and 7(t) in (2.l) represent the control-
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led and uncontrolled "inputs,", respectively, the latter hence-

forth being referred to as the "disturbance," The discussion

will proceed under the assumption that the process governed

by (2.1) is discrete,* so that (2.1) is a difference equation,

and can be rewritten as

x(t+l) = S&x(t), m(t+l), z(t+l)] ,X(O) =c, (2.2)

t = 0, 1, 2, ... , T-1,

Where T will be assumed to be finite. Equation (2.2) will

subsequently be referred to as the "causal subsystem," the

letter S being used to remind us that it is regarded as a

system.**

*An analogous discussion exists for the continuous

case.

**In some control problems, the controlled input
(to S) vector m(t) is itself an output of another system:
m(t+l) = Ar(t7, v(t+l)], where v is the controlled input
Fo A. The' vector v may have only a single element, just
as m could have iF (2.2). This system can be integrated

with-the causal subsystem S by defining a new state vector
y(t) = x(t), m(t) ". Then, the vector functions A and S
6an be combinea into a new vector function T as f-llows: -

x(t4-l) =S x(t), A[ynt), v(tAlJzt~)

m(t+l) A _[_I(t), a(+)

becomes

y(t+l) = T[Y(t) v(t+l), z(t4l)],

which is exactly the same form as (2.2); thus, the introduc-
tion of A above causes no change in the conceptual frame-
work at tFis level of generality.
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In Chapter I we distinguished between goal-seeking

elements which had the capabilities to select a particular

transformation element from a set of such elements and goal-

seeking elements which influenced other goal-seeking elements.

In this chapter, the first capability, which was termed type

(i), takes the form of selecting certain controlled input

vectors at each transition, by regarding the process deter-

mined by (2.2) as the successive application of elements in a

sequence of transformations on the initial state x(O) = c.

The duality between the sequence of controlled input vectors

M and the sequence of transformations

S[x2s), m(l), Z(l)J, SLSLXS(O), m(l), z(l)], mn(2), z2]

... [ ... ...) m Z1) ,M 2) () , 6 ,,j(
_ L(T)] is well known.(6)

Consider a goal-seeking element G having the

capability of controlling the causal subsystem (2.2) through

selection and implementation of the controlled-input vector

sequence M. Suppose Gfs goal is to minimize a %loss func-

tion" g(M, X, U), where u(t) is the vector of parameters in

the loss function at the transition x(t-l)--*x(t). These

parameters are regarded as uncontrolled by G. The "control

problem9, facing G, then, is "determine M so as to minimize

g(M, X, U) subject to (2.2)."
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The solution* of this problem is an expression

for the "optimal policy " ( 6 ) or .operationw..2) M in terms
o

of the sequences U and 2. This is denoted by*

(M)0 
= M(U, ) (2.3)

It is clear that G must possess complete information about

U and 7 if it is to evaluate M ° correctly, i.e. determine

the operation to be performed.

2-.h Organizational Structure and Equilibrium State

Any collection of goal-seeking elements, each of

which participates in the control of a single causal sub-

system, will henceforth be referred to as a .controllere..

Consider an organizational structure of a controller consist-

ing of two first level goal-seeking elements G11 and G12

having the capability of type (i) and a single second level

goal-seeking element G2 having the capability of type (ii),

which is characterized by the following:

*In the mLnG theory, goal-seeking elements are

assumed to have at least the problem solving capabilities of

the researcher.

**Included in (2.3) and the comments following it
is the case where the solution determines an optimal "feed-
back controller," i.e. a rule of determining M0 element-by-

element as the process evolves, according to the values assumed
by the state variables, denoted symbolically by

m(t+l) = hbi(t), z(t+l), u(t+l)].
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1. A reticulation (splitting up) of the causal
subsystem, into two causal subsystems S1 and

S2, by partitioning the vector function S and

hence the state vector X so that

2j~~)= : [st'Etl ) ,  (t+!), (2.4)
x (t~l) = S_2x(t), m(t+l), z(t+l)] (2.5)

x(t) Dil(t) x2(t)] . (2.6)

2. The causal subsystem Si is placed under the

cognizance of G li, i = 1, 2, i.e. Gli is

assumed to be aware of the functional form of

SLi but not of S., for i $ j.-a

3. The controlled innut vector is partitioned

m(t) = [m12(t), 1 2 (t)] (2.7)

and G is given the capability of select-

ing m .(t) at each transition.

4. It is assumed that Gliis goal is to minimize

the loss function gli(Mi, Xi Ui* ).

5. The second level unit G2 has the capability

to adjust the parameters UJ and U2* in the

first level units, loss function. G2 is aware

of the entire system, i.e. the equation (2.2),
the method of partitioning S, and the goals
and means of control of G 17 and G1 2 °

6. It is assumed that G2 is goal is to minimize

the loss function g2 (M, X1 U).

Figure 2.1 is a schematic diagram of the effects exerted on

and within the 2L3G system consideredhere.
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Figure 2.1

U

Ii

The dynamics of the two subsystems S and

such that, under identical inputs and disturbances, the

transition from x(t) to x(t+l) governed by equations (2.h),

(2.5), and (2.6) is identical to the transition governed by

(2.2). Equations (2oh) and (2.5) oan now be rewritten as

x.i(t~l) = si[x_(t), ri(t+1), wi(t4-l)] (2.8)

for i = 1, 2, where wi(t~l) is the vector of uncontrolled

inouts to S. and contains the effects of mj(t) and x.(t) for

11

i ja The organizational structure under consideration here

can now be characterized as the simultaneous consideration of

the three control oroblems
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(i) of Oli for i = 1, 2; "choose Mi so as to

minimize gli(Mi, Xi, Ui*) subject to (2.8)."?

(ii) of G2; "choose U and U2 * so that G and

G1 2 will together determine M so as to

minimize g2(M, X, U) subject to (2.2)."

The solution to Gli's problem is an expression analogous to

(2.3),

(Mi)o  Mi(Ui*, Wi) (2.9)

The second level element G2 determines the optimal control

law (M) from (2.3). Denote that part of (M), corresponding

to the controlled input variables under the control of G

by (M)o • In order for the optimal control law to be synthe-

sized by the 2L3G controller, we must have

( )o = (Mi)o (2.10)

so, substituting 0 into the left side of (2.9) and solving

for Ui , we get

(u1*) o = Ui* (Mi) o, Wi] (2.11)

as the solution of G2 's control problem.

Under the conditions stated above, Gi cannot,

in general, determine (Mi)° from (2.9), for Wi is a function

of X for i j. The line of behavior Xj is affected by Xi,

so that a functional dependence of Wi on Xi is established.

Since Xi cannot be determined until Mi is, we have arrived



20

at an impasse. In order to bypass this difficulty, we Dro-

pose the iterative process described below.

The finite T-stave process governed by (2.2) is

imagined to be repeated an indefitite number of times. This

can either be interpreted as a ,real,, infinite-stage process

with

x(0) =c = _x(Tl) = x(2T+2) = ... =x(nT+n) =

z(t) = z(t-nT-n), u(t) = u(t+nT+n),

for t = 1, 2, %.., T and n =, 1, 2, ... , or as a ,ifictitious,

repetitive simulation of the finite T-stage process. Suppose

Gli adopts the following procedure in order to resolve the

unknown effect of Wi . For the initial iteration of the process,

i.e. from t = 0 to t = T, Gli uses wi(t) = 0 for t = l, 2, ... ,

T in determining its control inDut vector sequence from (2.9).

This is denoted by (Mi)l, the subscript Ill, outside of the

parenthesis deteriaining the period over which this sequence

runs. This notation will be extended to the other quantities

of interest here; thus, (Xi)n means the sequence of x i(t)'s
th

during the n- evolution of the Drocess. If we solve (2.8)

for w i(tl), we can write the discrepancy in terms of the ob-

served quantities

w!i(t+l) 9aj[xi(t+l), xi(t), mi(t+l)], (2,12)

t = , , ., T-1%
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Now, after Gli determines (Mi)l, as indicated above, we can

imagine that imolementation" of this is instituted by Gli

actually "feeding in" to S, as its share of the inputs, the

vectors mi('), mi(2), ..' mi(T) at the appropriate times.

Gli can, in turn, observe the subvector xi(t) of the state

vector x(t) at each time step, and with this information, can

compute a w.(t) for each integral t using (2,12). Denote

the sequence thus obtained by (w.), and assume that Gli now

uses (Wi) 1 as the Wi in (2.9) to compute (Mi)2* Then, the

entire procedure can be repeated. In general, we can ideal-

ize Gli as carrying on an iterative procedure, where it

computes (Mi)n by the formula, analogous to (2.9),

(I:i)n Mi Ji*, ('i)njJ (2.13)

then uses the observations it makes on (Xi)n to compute the

vector sequence according to*

win(t) = n(t), Xn(t4il), m.n(t)], (2.14)

t = 1, 2, 00., T,

which is obtained from (2.12). if the process ever yields

the equality (Wi.) : (W )n+., we would say that the process

has arrived at a state of equilibrium, i.e. a state which is

unchanging for subsequent periods of evolution.

* A superscript will be used to indicate vectors of
a specific sequence, so that win(t) denotes a vector in the
sequence (Wi)n .
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Notice that if a state of equilibrium is attained,

i.e. (Wi)n = (Wi)nl, then (Mi)n = (Mi)n+1 and (Xi)n =

(Xi)n+1 . Furthermore, these conditions also hold if i is

replaced by J, i.e. G and G12 observe the event "arrival

at equilibriumR simultaneously. This must hold, because the

"residual" effect felt by Gli, that is, the difference between

the observed and the anticipated values of ;(t), is due to

the acts performed by Glj; all other effects are identical

over each iteration.

Unfortunately, we cannot guarantee that every such

process of the type described above will arrive at a state of

equilibrium. We can, however, establish sufficient conditions

for this. The argument involves a technique of mathematical

analysis known as the "method of successive approximations"

and depends heavily on the notion of a ",contraction mapping,"

which we now consider.

If it is possible to find a transformation

P2.= f(pl) of finite-dimensional euclidean space * into itself

such that the transforms of two points in the space are

nearer to one another than the original points were, f is

called a "contraction mapping. " ( l ) If we denote the distance

*The argument generalizes to complete metric spaces.
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between two points p1 and P2 in multi-dimensional Euclidean

space by d(pl, p2), this can be expressed in mathematical

terms by requiring the existence of a positive scalar a < 1

such that

d[f(pl), f(p2)] f a d(pl, p2). (2.15)

It is easy to see that successive applications of a contrac-

tion mapping, i.e.

P2 = f(Pl)' P3 
= f(P2 )1 "''' Pn.l = f(P, )' "'" (2.16)

would result in

p = f(p) (2.17)

to any accuracy desired. For

d [Pn+l Pn] d f(Pn)' f(Pn-1)] an -' 1 d[pl, P2. (2.18)

If f is a contraction mapping applied successively as indi-

cated above,

lim d [Pn ' Pn] ,

and lim p = p, where p is the unique solution of (2.17).
n- 4o n

Suppose the vector of uncontrollable variables

!i(t) has qi elements. Then, as we noted in section 2.2, the

vector-sequence Wi determines a point in qiT-dimensional

euclidean space. The sequence of vectors (W.), (!i)2,

thus determines a sequence of points in euclidean space of

qiT dimensions. Furthermore, a mapping between successive
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elements of the sequence of I ,s is implicit in equations

(2.13) and (2.14); for, from (2.13), (Mi)n depends on (Wi)nl

and (Wi)n depends, in turn, on (Mi)n- Hence, we can combine

(2.13) and (2.14) to find the mapping

(!i)n+l = f[(!i)J (2.19)

If it can be established that (2.19) is a contraction mapping,

i.e. that

d{(W)n, ( Wi)n+j= dff[(w[i) W[(_i)n-l1I

a d f(!L)n-l' (!i)n

where a is a constant less than unity, our sufficient condi-

tion for convergence to equilibrium would be established.

Notice that we could have just as well investi-

gated the mappings between (Mi)n and (Mi)n+1 or between (Xi)n

and (Xi)n+1 for the contraction property. Furthermore, if we

could establish that a mapping between equally spaced elements

of any of these sequences, say between (Xi)n and (Xi)n+k, is

a contraction mapping, this would also be a sufficient condi-

tion for convergence to equilibrium. This can be easily seen

by noting that the sequences

(Xi)l, (Xi)k+l, (Xi)2k+lP ...

("i)2' (Xi)k+2,' (Xi)2k+-2, ...
(Xi)k, (Xi)2k, (Xi)3k, .
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all converge to the same limit, since as we stated above, the

solution to (2.17) is unique; that is, it does not depend on

the point from which the sequence of successive mappings

begins.

A slight conceptual difficulty arises in cases

where the iterative process converges, i.e. a ;' 1 in (2.20),

but an infinite number of iterations is required to obtain

(Wi)n = (Wi)n+1. Henceforth, we will refer to %achievement

of equilibrium to any prescribed degree of accuracy.-' Given

a 6 > 0, if the sequence (Wi)l, (7i)2' ... converges, there

exists a finite N such that d[(Wi)n, (Wi)n+l]< 6 for

n > N; thus, in this case, "achievement of equilibrium within

th
64 would occur at the N- iteration.

The iterative process described above is conducted

at the first level. Sunose a < 1 in (2.20) and let (w.i)e

denote the solution of 17 = f(w!), where f is the mapping

(2.19). The "control action in equilibrium,"t (Mi)e, and (Wi)e

are connected by the relationshio, analogous to (2,9),

(Mi)e = Mi[Ui, (vi) e  (2.21)

(MI)e has the property that it is an optimal policy for GII ,

in the conditions U1  imposed by G2, when G12 uses the policy

(M2)e, and vice versa.
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Returning to the consideration of G2,s control

problem, it is seen that (2.11) contains Wi just as (2.9)

does. Since G2 is aware of the entire system and the optimal

control law (M)0 it can obtain (W1) ° and (W2)0 by solving

(2.12) for i = 1, 2, and for t = 1, 2, ..., T when the opti-

mal control law is applied. The following expression,

(Ui*)o = ui [(Mi )00 Mio] (2.22)

obtained from (2.11), will assure that the first level itera-

tive procedure converges to the optimal control law, i.e.

that (Ml) (Mi)e"

If it is difficult to obtain (Wi) ° by solving

(2.12) as indicated above, G2 may "assume" an equilibrium

value for W., say (Wi) ;: then, using (Wi)l in (2.11), obtain

(Ui*) 1 . The iterative procedure between the first-level

elements, assuming it converges, arrives* at the equilibrium

value (wi)e I , under the conditions imposed by (UJ*)I and

(U2*)l. G2 now designates (Wi)
2 = (Wi)o I and repeats the

2 2process for (Wi) to determine a new first-level value (Wi)e

Continuation of this process defines a "nested,, iterative pro-

cedure, where each single step in the (Wi)n iteration involves

the entire (Wi)n iteration described earlier. Convergence

*Within some prescribed degree of accuracy.
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requires that

(Wi) n l = h[(wi )n] (2.23)

be a contraction mapping, as well as f in (2.19). This

case will not be considered further in this chapter. It

will apnear again in Chapter VII.

It is interesting to examine the relation between

the concept of equilibrium, as we use it here, to similar

ideas in other theories. In mechanics, the idea of equili-

brium plays a large role, particularly in the sub-area called

Nstatics". A weight, hanging by a chain, is in equilibrium,

the downward force exerted by gravity being exactly balanced

by the upward force of the chain. In tdynamics", the concept

is also imoortant, and begins to resemble our ideas above.

If we imagine the weight to be pushed so that s swinging

motion is introduced, the forces of friction impose a contrac-

tion mapoing on this system, in that the extreme point of the

arc of each swing is closer to the "point of rest', or

Iequilibrium point,, in our notion, than the extreme point of

the arc of the previous oscillation. This is an example of

tLyapunov stability. "( 23)

Game theory also uses the concept of "equilibrium

point " ( 1 6 ' 1 9 ) in a manner quite similar to that described
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above. The iterative process described earlier can be thought

of as either a temporal repetition of a "game of prescribed

duration" (ll ) or as the "fictitious play" (16 ) of such a game.

Game theory also utilizes the idea of "mappings with a single

fixed point" (19) to determine points of equilibrium. A

particular application of game theory to the types of problems

arising in multi-level control is discussed in Chapter IV.

Various theories in economics utilize the idea of

equilibrium to explain prices based on laws of supply and

demand, The "dynamic cobweb"(21 ) concept is based on the fact

that the present supply creates prices causing a specific

demand which, in turn, leads to a new level of supply. This

procedure is somewhat analogous to the iterative process de-

scribed earlier in that it defines a contraction mapping

under certain conditions. Notice in Figure 2.2 that the dis-

tance between S2 and S3 is less than the distance between Si

and S2 *

Figure 2.2 Price

S upply
4- Up

demand

OQuantity

S 3 S2
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As we stated in Chapter I, we propose the rate of

convergence to equilibrium as a means of comparing the effect-

iveness of different structures of a mLnG system. Referring

back to the characterization of a structure made at the be-

ginning of this section, it is clear that we can represent

each element of the structure set considered here by the two

vectors _ = (a- .'°' 0) and = (p, p2, " r )

called "selector vectorsH, having the following properties:

i if x.(t) is under the cognizance of Gli,

where i 1, 2, j = 1, 2, S.., s, for the special case

above, and

'k = i if m.(t) is manipulated by Gli

where k = 1, 2, .., r and again i = 1, 2o For example,

with five state variables and 6 controllable variables

a- = (1 2 1 1 2)

(2o212 )

would mean

2i1 (t) = Lx I(t) x3(t) xh(t)] -, 2(t)j+ 2 (t) X5(t)]

and

mlt) = ml(t) m2(t ) m4(t)] /,M2(t) = Im3(t ) 75(t) m6(t)] /

If the rate of convergence of the iterative process

between the two first level goal-seeking elements varies as
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the structure changes, then that structure which affords the

most rapid rate of convergence is best. For, suppose the

repetition of the finite-stage process is regarded as an in-

finite-stage periodic process, as mentioned earlier. The

faster the rate of convergence, the better the approximation

of the sequence (M)l, (M)2, (M)3, ... to the optimal control

law for this process, (M)o, (M)o, (M)o, .... Here, (M)n

denotes the combined control actions (MI)n and (M2 )n for the

n " period", and lim (M) = (M)o, through G2 s "influence"
n--,O n

as noted earlier.

2.5 Self-Organizational Activity

In this section G2 is allowed the additional*

capability of changing the organizational structure of the

controller. An example of a "structure change" as it is re-

garded in this investigation would be "take xk(t) from G12ts

cognizance and place it in Glls, i.e. change 0-k from 2 to 1,

making appropriate changes in the loss function, the reticula-

tion specified by (2.4), (2.5), and (2.6), and the means of

influencing G11 and G1 2 ." The contraction factor a in

(2.20) could be regarded as a structural parameter, since it

decreases as the rate of convergence increases; thus, if the

*To the capability of type ii already granted it.
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above change produces a reduction in a, it would be classi-

fied as a change for the good. The variation of the parameter

a, then, establishes an ordering relation over the set of

structures considered here.

The soecification of U and U2* by G2 according

to (2.22) can be regarded as a mathematical convenience. It

allows us to hold the equilibrium point constant while varying

the structure. This results in a concentration on the self-

organizational aspects, the main objective of this thesis.

Let us regard the iterative process as determining

a dynamic system whose state trajectory is X1, X2,

It is interesting to compare the problem of which structure

G2 should choose with a conventional control problem(9);

",given a dynamical system

E (t~l) = EL~ f(t)],

find the vector function f(t) such that given an initial value

](0), the system reaches equilibrium in the shortest possible

time.4 The "structure-choice oroblem" is strikingly similar;

"given a dynamical system

%

where the transformation Q a depends on the structure and has

a contraction factor a, find the structure such that given an
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initial value (X)I, the system reaches equilibrium in the

shortest possible time."

Throughout this chapter the discussion has been

held to a high degree of generality. Such things as the

question of the stability of equation (2.4) under the "forcing

function" represented by M and the "realizability" of the

solution M have been assumed away. In the remainder of

this thesis, we will investigate special cases which, although

simple, will contain all of the features brought out here.

In particular, Chapter VI is concerned with the application

to a specific case of the general statement made above, namely

that the rate at which a reticulated mLnG system approaches

equilibrium is a good measure of the effectiveness of the

reticulation.



CHAPTER III

OPTIMAL CONTROL FOR A lLlG SYSTEM

3.1 Introduction

The purpose of this chapter is to describe a

particular control problem which we will be concerned with

in the sequel. The most important feature of this control

problem is that it is solvable analytically using standard

techniques. Although the problem is simple, it still con-

tains all the relevant components of the general mathematical

representation stated in the previous chapter. The solution

will be derived under the assumption that the controller is

of the simplest possible structure, i.e. single-level

single-goal, since this is the form in which it will be

applied later. Of particular interest will be the formulas

expressing the operation to be performed by this single goal

unit in terms of the state variables, uncontrollable vari-

ables, and disturbances; we will use these many times in

what follows.

The notational convention of representing

sequences of vectors by upper case letters is carried on in

this chapter.

The situation we will consider here is this: a

system S is such that changes in its state vector x(t) occur

at discrete instances of time. These changes can be described

33
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by the linear, dynamic, vector-matrix difference equation

x(t+l) = Ax(t) + z(t+l) + m(t+l), (3.1)

over a finite number of time periods, t = 0, 1, 2, ... , T-1,

with initial conditions x(O) = c. The vector z(t) is consider-

ed to be an uncontrolled innut or disturbance which is pre-

dictable without error over the entire time domain, hence

is essentially a vector of parameters. The vector m(t) is

the controlled input vector, having the same number of

elements as x(t). The matrix A is non-singular and constant

over the period of interest.

A goal unit G is charged with guiding the state

trajectory x(l), x(2), ... , x(T) of S along a path which

minimizes

T

g(MX) r_ axt (t) [X (t) - (t) (3.2)

t=l

T
+ Y7 mt (t) Dm(t),

t=l

where D is a positive-definite diagonal matrix and U is

a known vector sequence, with the vectors u(t) having the

same number of elements as x(t), and with a definite element-

by-element association between the two. The seqence U

can be thought of as determining an "ideal trajectory* along
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which G "desires" the actual state trajectory determined by

X to move. For'example, if xi(t) is ,tsteel capacity at t,,'

ui(t) would be "desired steel capacity at t." The perfor-

mance criteria g(M,X), then, represents a balance between

the cost of tolerating nonideal behavior and the cost of

doing something about it.

The set of acts available to G at any particular

transition, say at the transition

is simply the numerical adjustments m(t), m2(t), ... , ms(t)

made on the corresponding elements of the vector Ax(t-1) +

ft). The "operation" or "optimal policy" performed by G

is emission of the vector-sequence of these adjustments, M,

which minimizes (3.2). The operation is assumed to be

realizable. We now proceed to find the operation, i.e. solu-

tion to the minimization problem.

Notice that the entire process governed by (3.1)

over the times 0, 1, 2, o.., T, can be written as a "closed

form, solution of the difference equation (3.1), in terms of

the initial states and subsequent control input vectors and

disturbances. This is obtained by applying the formula, de-

rived in Appendix A,

x(k) = Ak 0 + Ak -[(j) + z(j)J.

j=l
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This can be further abbreviated in vector-matrix form

X KCY + Z] + 0, (33)
I 0 0 °.. 0

A I 0 ... 0
where K A2 ' A I ... , a matrix with matrix

AT- 1 AT- 2  A I

elements, and A c

A2

A c

The "loss function" now becomes

g(MX) = [Ix-uE]f[I-uQ+ MIEM,
where 0 0 9. 0

0 D 0 0.
E r 9 I .•

0 0 0 ... D

3.2 Derivation of the Optimal Control Rule

The simple nature of this particular control

problem* is now evident. The problem is "minimize

*This is simply the sT-dimensional analogue of

the scalar problem, "minimize (x-u)
2 + em2 , subject to

x = k(m+z) + c, where c > O."
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(X - U)t(X- U) + M'EM, subject to X. =K(M + Z) + C, where

E is a Dositive-definite matrix." It can be solved either by

employing the method of Lagrange's multipliers, or by substi-

tution of K(M + Z) + C for X directly in g; we will do the

latter. Let g(M) be used to denote that this substitution

has been made;

g (L) =EK (I+Z) +c-j C [K(M +Z) + C -uJ (3-4)

+ M'EM

= M'(K'K + E)M + 2(KZ + C - U)'KM

+ (KZ + C - U)'(KZ + C - U).

The diagonal matrix E is positive definite and,

since K is non-singular, K'K is also nositive definite.

Hence, K'K + E is positive definite. The positive definite-

ness of K'K + E is a necessary and sufficient condition for

g to be a strictly convex function of the elements of M,

In order to find the stationary point of (3-4),

we differentiate g(M) with respect to the elements of M and

solve the system of linear algebraic 
equations which results*

from setting these derivatives equal to zero:2

*The derivative of the quadratic form g with

respect to the vector M is a vector of the same dimension as

M. The details of this representation are relegated to

ppendix B.
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g = 2EM 2+ , M + 2K,(KZ + C - U) = 0 (3.5)

M= (K'K + E))-KI (U-C - K_). (3.6)

The minimum value of g(M) can now be found by

substituting M as obtained from (3.6) into g(M), as given by

(3.4); thus,
(3.7)

g rain(M) = (U- K (K) II -('K + E) -'t](HU-a - 4) .

To determine the state vector sequence X which

results from "implementing" the operation, (3.6) is substi-

tuted into (3.3), resulting in

X = K(KIK + E.)-',U + KEI - (KK + E)-'K KJZ

* [I - K(K'K + E)-K'] C,

or

X K K'K + E)'(KtU + EZ) + [I - K(K'K + E)-KJ 3.8)

3.3 Stability

in order to investigate the stability of the above

process, it is first necessary to introduce the concept of

a "norm" of both vectors and matrices. Define the norm of

a vector as

[t 1 / 2 (=

t=l
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The norm of a matrix A is said to be "tcompatibleu with the

norm of a vector as defined above if

IlAxIJ <- I AII lxi . (3.10)

A method of constructing a matrix norm so as to satisfy this

compatibility condition is to apply the formula

IJAII = max 1iAxii 1 (3.11)
iiI = 1

Norms of matrices also have the properties

IIABIl < IhAII hIBIl, (3.12)

I IA BII < I AII I IBI I,(313)

and

S1 I 1 . (3-1 )

In addition, Halmoz(13 ) and Fadeeva (10 ) prove that

I AI I = [ I(AtA)]I/2 (315)

and

A symmetric IAIi = max l(A) ,Itn(A)IJ. (3.16)

In particular-

A positive definite hiAI p (A)" (3.17)

In (3o15), (3.16), and (3.17) immediately above, Vi(A) de-
th

notes the i- characteristic root of A, the convention

n _s Ln-l L 12 g Ll being understood here.

The process described by (3.8) will be termed

,stable, if for each e > 0, there exists a 6 > 0 such that
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any trajectory y(i), y(2), •.., y(T) satisfying the condition

IxI(O) - y(O)I I g 8 satisfies IIx(t) - y(t)I < e for

t = 1, 2, ... , T. In order to demonstrate the stability of

(3M8), rewrite C as

A c A 0 0 .. 0 x(O) (3.18)

A 0 A 0 ••. 0 x(O)

= 0 0 A3  .o. 0

ATc 0 0 0 o. AT  x(O)

since x(O) = c. Letting

Y(o)

Cy (3-19)

y( o)

we have, from (3.8),

I,,x-Y1l I 2t l x(t)-y(t)]' I x(t)- y(tt1/ (3.20)

I : - K(K, I K +E)-lK,: ,T(O. , - _yl,

where X and Y are both trajectories determined by (3.8) but

with different initial conditions. From (3.20), and taking

note of (3-10) and (3.12),

Hgx~t)- (t)II =frx(t) _(t)f'x(t) (t)7Jl/2

I- 11 _ IIr - K(K'K+E)-IK'IIIJII.IIC .- YI,
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Now, it can be shown that III-K(KK+E)-IKII ' < 1 (for an

indication of how this is done, see the proof of Theorem

5.3*1 in the fifth chapter) and, from (3,11) and (3.18), it

is clear that IIJII=IIAII. Also

I.I~x-c ( 1x(o)-z o)J ,fx(o)-z o 1/2 (3.22)

T T1/2 1(0x_;(O)ol.

In (3.22), we have utilized another property of the norm)

namely that if a is a scalar,

jjaxji =  jili xI . (3.23)

As a result of the statements immediately above, it is ap-

parent from (3.21) that

I 1£(t)-y(t)I I I IAl IT1/2111(o)-(o)1 1

thus, given an e > 0, letting 6 e/(IIAIIT /2), it is

easily seen that if IIx(o)-y(O)II < 6 then IIx(t)-y_(t)II <e,

so that the process described by (3.8) is stable. This de-

finition of stability is a specialization of %Liapunov

stability" (see Struble(2 3 )).

3.4 Sensitivity of the Loss Function to the Variation of

Certain Parameters

It is interesting to examine the value of

g min, as given by (3.7), for different values of the elements

of the positive definite diagonal matrix E, which are the
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elements of D (in (3.2)) repeated T times.* This can be

rigorously investigated by proving

Theorem 3.1g An increase (decrease) in at least
one element of E in (3.7) results in a decrease
(increase) in gmin (M) as given there; these

manipulations are assumed to be constrained so as
to maintain the positive-definiteness of E.

Proof: Recall that KtK+E, and hence (KK+E) - and

K(KtK+E)- Kt, are positive definite. Now

CK(Kl K+E) Kf] 1 = I + (K~l)I1 -l (3.24)

Consider the quadratic form

Q = 21 [K(K' K+E)-'K] 'q = q tq +  'Ep,

where p = K- q. Then

n[q
2+e iiPi2 , (3.25)

since E is a diagonal matrix. Now, it is clear from (3.25)

than an increase (decrease) in any ei results in an increase

(decrease) in Q, for constant p and q. Let T denote the

*The intuitive notion that g min increases (de-
creases) if any of the control costs increase (decrease) can

be seen by regarding the matrix I-K(KvK+E)- Kt in (3.7) as a

generalization of the positive number l.-42/(k +e), with e > 0.
The right hand side of (3.7) can then be thought of as a

generalization of (u-c-kz)2 [l-K 2/(k2+e)] where u, c, k, and z
are scalars. Increasing e increases the expression in [3,

2 211 2 )
which in turn increases (u-c-kz) l-k/(k +e)] if (u-c-kz)
is held constant.
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orthogonal transformation* which reduces K(KK+E)- K to

canonical form, and let

r Tq

Then
n 

2

i=l i

so that an increase (decrease) in q must result in a decrease

(increase) in at least one of the characteristic roots Vl'

2"' Pn of [K(KK+E)-Ktj. If we let s = T(K+Sc-U) then

(3.7) becomes

n
X = (KZ C-U)(Kz cU) -( LisZ2 ,

so that a decrease(increase) in any of the ifs clearly

causes an increase (decrease) in gmn (M,X), Q+E.D.

3.5 Dynamic Programming Solution

A method of obtaining the minimum of (3.2) subject

to (3.1) by dynamic programming is presented in Appendix C.

This should be a preferable method of solution when the

numrber of transitions of the process, T, becomes very large.

The dynamic programming technique substitutes solving T

systems of equations, each s x s, for solving one sT x sT

system of equations as was done above, where s is the

number of elements in x(t) and r(t).

*T exists since K(K'K+)-l K' is positive-definite.



CHAPTER IV

SOME ASPECTS OF A lL2G CONTROL PROBLEM

4.l Introduction

In this chapter we investigate the decomposition

of the control problem of Chapter ITI into two similar smaller

problems. Two goal-seeking elements Gil and G12* will each be

concerned with one of these smaller problems. All the nota-

tional designations of Chapter TII are carried over to this

chapter. In addition, it is understood in what follows that

i = 1, 2, j = 1, 2, and i j.

Consider the following partitioning of the vectors

x(t), z(t), m(t), u(t), and the matrices A and fl;

x(t) [x1 (t) S2 (t)],

Z-(t) = [l(t) W~t)],

a~t) = [l(t) 22(t)],,

[11 (t) 112(t)]

AL1 A1 bD11 012A Dd
21 A22 12

such that (3.1) can be expressed as

*The two-digit subscripts "ll" and "12" are used
in agreement with the notation employed in other parts of this
thesis.



x1 (t+l) = Al1xl(t) + A,2£2(t) + 11(t+l) + ml(t+l) (4.1)

.2 (t+l) = A21xk(t) + A2 2k(t) + 2 (t+l) + m2 (t4l) (4.2)

and the loss function (3.2) is "separable", i.e.

g(MX) = glI(MIXI) + g12(M2,X2) (h.3)

where
T

gli(Mi,=i) = Z [4(t)-ui(t)][(t) -i(t)] (4.4)
t=l

T
+ '- m 1 (t) D 1 .(t)

t=l -

The control Droblem of concern to G is "choose Mi so as to
ii 1i

minimize gli(Mi,)i) subject to (h.i)-"

The difference between this control problem and

the one studied in Chapter III is the presence of the ,cross-

coupling" disturbance Ai jx(t). As a result, the total dis-

turbance at each transition, call it

w.(t+l) = A x.(t) + Z.(t~l), (4.5)

is functionally dependent on the state vector sequence" Xi.

In Chapter III and Appendix C, Z, of which W is the analogue,

*This is strictly a mathematical statement. It
occurs by way of X in (4.5), hence on W. and finally Xi by

interchanging i and j in (4o5). An organizational inter-
pretation would be that the actions Ml taken by G1 1 affect

the trajectory X2 of G1 2ts state variables by way of (4.1)

and (4.5) and vice versa.
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in independent of X and the solutions obtained there are

based on this fact. Methods of bypassing this difficulty so

that these solutions can be applied are considered in later

sections of this chapter.

We will be concerned with finding "equilibrium*

policies. * These are denoted by (M1)e and (M2)e, and have

the property that (M1)e is the solution to Gll, control

problem when G12 uses (M2)e and vice versa. The manner in

which the concept of equilibrium is utilized in this thesis

has been outlined in Chapters I and II. This chapter is a

step in the application of these ideas to certain linear

systems.

4,2 lL2G Control under Perfect Information

In this section we make the following

*The 1L2G control problem formulated here is an

example of a "game of prescribed duration." (ll ) This nomen-
clature refers to a multistage process in which each of n
players (here, n--2) exerts a control on the position of the
process. In the case studied here, the process is governed
by (3-1)o The control exerted by the "player" Gli is through

Mi and Gli, s "payoff" is determined according to how well

it keeps the value of gli(MiXi) down. The equilibrium policy

is analogous to an equilibrium point in game theory,(16) in
the sense that (M1 ) e is optimal for Gl1 when G12 uses (M2)e
and vice versa.
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Assumption 4.2.1 The lL2G system is a "perfect
information"(1 7'18 ) system, i.e. G and G12 both

have complete knowledge of the entire system, of
U and Z, and of each other's goals. Note that the
statement of Gli S control problem in the previous

section did not specify that G have this informa-

tion.

In what follows, equilibrium oolicies for G and GI2 will

be found using assumption 4.2.1. These policies will provide

a benchmark with which to compare policies found by other

techniques in later sections.

Recall, from Chapter IIl, the $unfolded" repre-

sentation of the closed form solution of the difference equa-

tions (hl) and (h.2), with notational changes appropriate to

this chapter,

x.(l) I 0 0 .. 0 Fw(1) +m.(l)

x,(2) A.i I 0 . . w.(2) + m.(2 )

2Xi=. A ii A ii 1 . 0o

S S

T-l AT-2 T-3..mi(T)]
X.(T) Ai A Ii I mT(T)

Aii-'

+ K K emi) + -(.6)

-A.c
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Equation (4.5) can be represented as

wj1) 0 0 ... 0 0 Jx(l)

!S(2) Aij 0 ... 0 0 x(2)

- 0 A.. ... 0 0 x'

z ~ 1. i J.

I : L :7
(T) I 0 0 ... A.. 0 x.(T)

= LjX~j •(h.7)
zi(T)J

The loss function (4.4) is rewritten as

gni(M~ixi) = (xii-u),_-i) + M~iElx_ (4.8)

where

Di i 0 4.. 0

Ei=0 Dli .. • 0

0 0 l

in accordance with the unfolded representation.

From (3.6) in Chapter III, it is seen that the

minimum of gli(MiXi) subject to (4.6) occurs for

Mi= (KiIKi+El ) -- I (U.-K!i-SCi) (4.9)

If we combine the system of equations (4°9) for i=1 with the

system (4.9) for i--2, we get a set of sT linear algebraic

equations in the sT unknown elements of !h and _H2. In order

to express these in terms of C, 7, and U only, it is necessary
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to eliminate the k and 2 which is implicitly contained in

12 and W1, respectively. Also, it will be helpful to rewrite

the system of equations (4.9) as

(Kf )-l(Ki'Ki+Eli)Mi -: 2i - Kjji - 2i .  (4.lO)

Substituting (4°7) into (4.6), it follows that

i = KiLij- j + K 11+ Ki-i + 2i. (4.11)

Now, (4.6) with i replaced by j, substituted into

(4.11) yields

which, from (4°7) with i and j interchanged, is

KiMi + KiLijKjLjili + YijijKj j

+ KM K jC + C + Ki,_i (4.13)

or

ji= (I-Ki iKj Lj i i(Ki+- i ij jj +K - j iJ jj

+ K±Lij2j4Kiij. i)° (4°1I4)

Equation (4°14) is an expression of X. in terms of Mi and

Mj; hence, using (4°I4) with i and j interchanged, (4-o0)p

and (4.7), the following result is obtained;

(Ki)-I(Ki 'Ki+Ei)Mi = Hi - Ki(LijjZ+7i)

i- KiLIj(l-jLjiKiLij)-L(K.M.+KjL
1jKiZi

KjLj iKiM K jLjiC K12 C) - KiZi -C i • (4.2.)

_i ii i- (415)
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Now, taking i=l, j-2, then i-2, J=l in (4.15), a little

algebraic manipulating yields

for i=l, j--2; Q11 M1 + q12M12 =El'

(h.16)
for i--2, j=l; q21Ll + q 22 AM =_2'

where

Qii = Ki + (Ki')-E'li + Ki~ij (I-K LjiKiLij)-KjLjiKi'

QiJ = KiLij (I-Kj Ij JiLij )-. J

11i =_Ui - KiLij (I-KjLjiiLij)'(KjLjiKiZi+KjLjiCi

+ Kjzjj ) - KiZi  (4-17)

The value of M obtained by solving the linear system (h.16)

is the optimal policy from Gll, s viewpoint when G12 uses 1 2,

and vice versa, since (4.10) is satisfied.

Because of assumption 4.2.1 (perfect information),

G and GI2 can be envisaged as arriving at the system of

equations (h.16) independently. Then, solving this system,

Gli determines its control policy Mi from the solution, dis-

regarding M . There need be no communication between G and

G12 during this procedure. We now investigate the effect of

relaxing assumption 4.2.lo
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4.3 An Iterative Procedure for Determining Optimal Equili-

brium Strategies without Perfect Tnformation

In this section the assumption of perfect informa-

tion is replaced by

Assumption 4.3o1, Gli is aware of only that part

of the causal subsystem which it affects; i.e. it
knows (1.i) but not (h.j). Also, Gli has no know-

ledge about Gl2ts goal and vice versa.

Under assumption 4.3.1, Gil and G12 cannot determine equations

(4.16), as they were portrayed as doing in the previous sec-

tion. However, under certain conditions, the solution of

(4.16) can be found by the iterative procedure* described

below,

A temporal repetition of the finite process

governed by (4.1) and (4.2) is imagined to occur as follows:

Gil assumes !(t)=O for t=l, 2, a%., T, where w(t) is given

by (-5.). Using this particular sequence, which we denote

by (Wi)l, the operation (Mi) 1 corresponding to (Wi) 1 can be

determined from (3.6),** reproduced here with appropriate

notational changes.

'Which can be thought of a "fictitious play"(1 6 )

of the game described in the preceding footnote.

or from the dynamic programming solution of
Appendix C.



(Mi)n = (Ki'Ki+El0)_Ki
' Ui-Ki(Wi)n-ci , (4.18)

Then, the trajectory (XI), is obtained from (4.6), rewritten

as

(I)n = Ki (-i)n + (Mi)n + -1" (4.19)

GIP is now given the information about (Xl)I, from which it

can determine (W2)2 using (4.7), that is,

(-i)n = Lij(X )n-1 + Mi. (4.20)

Next, G1 2 obtains (M2)2 and (X2)2 just as GIl arrived at its

corresponding sequences above. Then G is given the informa-

tion about (X2)2 from which it can determine (W1)3, and the

whole procedure is repeated. Continuation* of this generates

the sequences

(11)1,  (11)3' (11)5 ,  see (4.21)

( 21 (X-)4' (x2)6,"' (4.22)

*The iterative procedure that is carried out by
Gil and G12 could be classified as "adaptive behavior" or as

a "learning process." What each element Gli does is to modify

the vector parameters which are the elements of the sequence

W. at each iteration to take into account "new information"
acquired dniring the previous iteration. The adaptive behavior
ceases if the difference between adjacent (Wi)nts is less
than some prescribed number 6 i



53

We now prove

Theorem 43.1. A sufficient condition for the
convergence of (Xi),, (-i )2+i' (Xi)4+i' Gas is

J Ki(KiKi EIli)-1EliLijKj (r i ,K j+Eli )-'EljLjil I '< '.

(4.23)

Proof. Substitution of (4.18) into (h.19) yields

(Xi) n = Ki(Wi)nKi(Ki, KiEli)-Ki[i-Ki(!i)n i] + Ci

Ki[I-(Ki l Ki.Eli)-lKi.tKJ (Wi)n + _. , (4.24)

where

Si = C-i+Ki (K i ' -Ki+Eli)-IK i ' (Ui-g-)" (4.25)

Substitution of (4.20) into (h.24), along with rewriting

I-(K iKi+Eli)-KiK as (KitKi+Eli)-'li gives

(Xi)n = Ki(Ki ' Ki+Eli)-liLiA(! )n-liri (4.26)

where

r. = q+Ki(K 'Ki Eli)-En _. (4.27)--I1

Now, if we substitute (4.26) with i replaced by j and

n replaced by n-1 into (h26) as it stands, we obtain the

important result

(Xi)n = K. (K. Ki+ li) - 'E liLij K(Kj' KEj) -

Elj L j i(Xi ) n2 + i (4.28 )

where

v.= ri+Ki(K'Ki+E li ) - liLirj (4.29)

j



It will be convenient in the sequel to have the abbreviations

II i  Ki (Ki' Ki+Eli)-lIiLijKj(KjiKj+EijE)-,IjLji, (4.30)

lTi (Ki t Ki+Eli ) _ E l i  (4.31)

Then, the mapping (4.28) from (i)n-2 to (i)n becomes

(Xi)n = IT (X") 2 v.. * (4.32)

Subtracting (Xi)n-2 from (Xidn and taking the norm of the

result yields the distance from (Xin-2 to (Xi)n;

ll( )n-(-X)n_211 = 11Ii(Xi)n_2 -(_)nJI 1

I I il I.1 I(X_)n_-dn_-4'1 (4.33)

In other words,

d ), n2 al aid[(X),(Z~J (4.34)

where a. = *IIi 1o Referring back to the discussion on

contraction mappings in Chapter IT, we see from (4.34) that

ai  1 is a sufficient condition for the iterative procedure

described above and the associated sequences (4.21) and

(4.22) to converge. This concludes the proof of Theorem 4.3.1.

If the convergence criteria IIIiiI <1 appearing

in the statement of Theorem 4.3.1 are satisfied, the limits of

the sequences (4.21) and (4.22) can be found by setting

(i)n = (I)n-2 in (4.32); thus

*as defined in Chapter III, equation (3.9).
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(Xi)e = (I-IIi)-ivi (4,35)

where v can be found from (4.25), (4.27), and (4.29)o The

subscript " above is used as a reminder that (X.) is an
-ie

equilibrial solution or "fixed noint" of the mapping (4.32).

Equilibrium values for ()e are found from (4.7) with

X )e , and the equilibrium policy (MI)e is given by

(4.18) with On"l reolaced by "e. We now prove

Theorem 4.3.2. The equilibrium vectors CMl)e

and C) determined in the iterative pro-

cedure described above satisfy equations (4.16).

Proof. The equilibrium vectors Ci)e' Ti)e' and (k)e are

governed by the same functional relationships as their

counteroarts _i 2i[, and X. in section 4.2. Hence, an

identical argument,* except for the "()eI around each se-

quence, can be used to arrive at a system of equations

identical to (4.16) with Ml)e and M2) e as the unknon.

in summary, we have developed an iterative

procedure to obtain the equilibrium policies without making

*This argument must be carried out from the re-

searcher's viewpoint, since under assumption 4-3.1 G i does
not have the information necessary to derive (4.16).

**This can also be shown by direct substitution

of Ni)e into (4.16), but this is extremely cumbersome

algebraically.
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the "perfect information" assumption. The goal-seeking

elements G and G12 alternated in determining and applying

their control actions. In true simultaneous control, G 1

and G12 would be required to apply the control actions at the

same time. The next section is devoted to the study of true

simultaneous control.

4.h Simultaneous First-Level Control with Incomplete

Information

The purpose of this section is to investigate

conditions under which an iterative procedure similar to the

one derived in the previous section is useful in determining

equilibrium policies under the "simultaneous control" require-

ment. Throughout this section, it will be assumed that Gli

possesses information only about the dynamics of the state

variables under its cognizance,* i.e. Glis control problem

is Nchoose Mi so as to minimize (h.) subject to

xSi(t+l) = AiixI(t) + w.(t+l) + m.(t+l).tt (4.36)

Although Gli can measure the disturbance j.(t), it does not

know the mechanism producing ji(t), i.e. equation (4.5).

*An organizational interpretation is (22) *When
tasks have been allocated to an organizational unit in terms
of a subgoal, other goals and other aspects of the goals of
the larger organization tend to be ignored in the decisions
of the subunit."
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The process to be controlled assumed to be an

infinite-stage process which is periodic, with period T+l.

The dynamics are governed by (4.1) and (4.2) with

i(t) = z.(t+nT+n), n = 0, 1, 2, .... (4.37)

Also, in (4.4),

ui(t) = u.(t+nT+n). (4.38)

The initial conditions are imnosed at T+l, 2T+2, ... , so that,

x(nT+n) = c, n = 0, 1, 2, *.. . (4.39)

Under this assumption, the finite T-stage process and the

associated control problems formulated earlier are simply

repeated an indefinite number of times.

Control of this process is assumed to proceed as

follows: Gi assumes wi(t) =0 for t=l, 2, ..., T and obtains

(Mi)l* from (4.9) with Wi = . Tt simultaneously implements

(Mi)l and observes

wi(t+l) = x i(t+l)-Aiixi(t)-mi(t+l) (4.4o)

as the process evolves over t=O, 1, ... , T-l, according to

(4.19) with n=l. At t=T, Gli will compiled the sequence

(Wi)1 of "retrospective residuals". For n=l, 2, 3, .., we

use

As before, subscriots outside the parenthesis
indicate the iteration or, in this case, the interval, over
which the sequence is used.



Assumption h.h.1. The anticipated* sequence of j
disturbances over the time interval nT+n, nT+n+l,
•.., (n+l)T+n is (Mi)n' the sequence of distur-

bances observed during the previous T-stage
interval.

The control action to be applied during the nth period is

therefore computed from the formula

n=2, 3, 4, ... ,

and the state trajectory (Xi)n is governed by (h.19).

The strict requirement of simultaneous control

specifies that

(-i)n = Lij(X-j)n+-i (4.42)

is the appropriate form of (4.7) to be used in this section,

as opposed to the "lagged" version (4.20) of the last section.

If the sequence (Li)l' (I!i)2 , 404) (Wi)n, ... con-

verges, the anticipatory mechanism of assumption h.4.1 is

accurate to any prescribed degree for n larger than some

N which depends on the accuracy required. We now investigate

the convergence of this sequence.

*The reader may prefer to think of ]i as a

stochastic vector. The prediction is then indicated by

(i) n = 2 ,nl n' i)n I i

n=l, 2, 31 ...
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The discrepancy between the actual and anticipated

disturbances over the nt h period is

(41i)n = ('k)n-'i)n-l \ •" (4-43)

Substitute this into (4.19) to get

(Xi)n :_ Ki [(!-i)n-I 4Wi)n (Mi)n1 ] i (.

and substitute for (Mi) n in (4.hh) its equivalent vector as

given by (4.41); then,

(Xi)n Ki Wi)n+Ki[I-(Ki'Ki+Elli)- "i' i](Wi)n-l+i '

where qi is given by (4.25). The argument continues along

the lines of the argument from (4,24) to (4.29) in the pre-

vious section, so these steps are omitted. The important

result is the functional form of the mapping from (XiWn-2

to (x.i)n;

(Xi)n = Ki (Ki' Ki +Eli)-liLij Kj (Kjt'Kj+Elj )-llIjLj (-~-

+K _1F. L Kj(6W.) l+v.
i -i ) n+Ki (KiI Ki Eli) - li ij j -j n-l-i

(4.6)

From (4.46) and the notions of norms and distances discussed

earlier,

d[(_)n  (in_ r I- = 1 (rii)n-(Xii)n_211

C [ ITi lI [•I (Xi)n_2-(Xi)n_ [ [ [Kil(4Li)n- !iOn.21

+ Ki iLijKj  Wj-W )nl-(Wj )n-3 I L

I7TiIId[(X i)n_2,(Xi)nQj + 6n P (4.47)
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where IIi and ,i are given by (4.30) and (4.31), respectively.

The positive term n is small, being a function of secondn

differences. Its lower bound is %ero, hence in order for

the inequality (4.47) to hold for all possible values of 6n'

we must have

d [X-i)n,(XiOn_- I 1jl lI[(Xi)n_2, (Xi)n.4]. (4-48)

The control procedure described above establishes

the successive application of (4.46) which, if flTil <1,

because of (4.48), generates the convergent sequences

(Xi) l , (Xji) 3 ,  .. (10i2n-1, ... (4.49)

(10i2, (10i4,' . (10i2 n ,'.. (4.5o)

We now Drove

Theorem 4.4.1. If I l i[ l 1, the sequences (4.49)

and (4.50) both converge to (Xi)e , the limit of the

sequence (4.2i) in the previous section.

proof. Let 2i)eI and (a.)e2 denote the limits of (4.49) and

(4.50), respectively. Then, taking note of (4.42) and (4.43),

we see from (4.46) that the following equations are satisfied,

since (10~eI and (X e 2 are also "fixed points" of the mapping

(4 .46) for n odd and even, respectively;

(4)e I = (1-1il{KiLij j)e .- (j)e2 +KiniLijK Li

Q-1 e -(Xi) el ,
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X,)'= (IilKiLij [(x.)e -(X)e 1+-v.+K.T.L.K.Lji

from which we obtain by subtraction

rI + 2 (T-1Ii-l1 Ki1iLij K Lji]'[ i)el-(Xi)e 2

= 2(-jli)-TKiLij [L )e I- )e2 2] (ho4S)

The two vector equations generated bv (hoh8) for i=l, j--2 and

i--2, j=l can only hold if

(,l)6 - (1)ie 2 = O9 (12)el-L2)e2 = 0

so that. (4h46) must reduce to (4-35) in a state of equilibrium.

This concludes the proof of Theorem hoh-1o

We have shown that the equilibrium state for the

simultaneous control case of this section is identical to the

equilibrium state of the simoler iterative procedure of the

previous section. it follows that the equilibrium policies

S(X), and (142). are the same. and that 1l)e and L2)e

satisfy equations (ho16).

h5 Sub-optimality of IL2G Control

In this chapter we have been concerned with the

deriviation of equilibrium policies, denoted by (MI)e and (M2)e .

Let (M) and (X)e denote the over-all policy obtained by com-

bining (M.) and (M2) and the resulting line of behavior,
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respectively, so that, from (4.3),

gj(M) e ,(X)e] = gll[(Ml)e,(Xl)e] ' g12[(M2)e' (Xe"

Notice, however, that the solution of (4.16) is not necessari-

ly the solution of (3.6). Denote the latter by (M)o; then

g[(M)o,,(X)o) ] -f g[(M)e,(X)e ]  (4o49)

since, by definition (M)o is the point at which g(M,X)

achieves its minimum subject to (3.1). In the next chapter,

we introduce a "second-level" unit to "coordinate" the

"action-counteraction" procedures of Gil and G1 2, so that the

equilibrium policy (M)e is also optimal.



CHAPTER V

SECOND LEVEL CONTROL IN A 2L3G SYSTEM

5o1 Introduction

The purpose of this chapter is to investigate

the role of the second level goal-seeking element in a 2L3G

controller (see Fig. 2.1). We will continue to use the

control problem of Chapters ITT and TV. Having the results

of these chapters available allows us to concentrate on the

concepts relevant to second-level control. Slight changes

in notation will be pointed out; that which is carried over

will not be elaborated upon. When i and j are used as

subscripts, i=l 2, j=l, 2, and i j, as before.
J

We list the assumptions which will hold in the

sequel,

Assumption.oll. The partitioning of x(t),

_t), and z(t) which allows (3.1) to be re-
written as (4.1) and (4.2) is in effect.

Assumption 5.!.2. The goal of the second

level element G2 is considered to be the

over-all controller goal. This is to mini-

mize (3.2) subject to (3.1)o

Assumption 5ol.3. The second level element
G2 alonehas knowledge about the entire system.

It knows the method of partitioning mentioned
above, the dynamics of the entire causal sub-
system, and the goals of the first level goal-
seeking elements.

63
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Assumption 5..4. The first-level element Gli

has the same information and control problem as
in Section 4..h The process being controlled

is the infinite-stage periodic* one described
in that section, and the control procedure em-

ployed by G11 and G1 2 is identical to the one

discussed there. G IS loss function is re-

written as**
T

gli(Mi'xi ) = E xi(t)-ui*(t) I xi(t)-ui*(t)

t=lT
+ 2L i (t)Dli _ji(t), (5.1)

t=l

where D is positive-definite and diagonal.

5.2 Synthesis of the Optimal Control Rule

in this section, G2 is control problem is "choose

U1. and U2. in such a manner that Gll and G1 2 will together

determine M so as to minimize g(M,X) subject to (3.1)." We

will make the

*Recall the remarks made in Section h.h; the
finite-stage control problems just repeat in time. An
,,optimalw policy will be understood to be over a single

T-stage period unless otherwise noted.

**The "separability" of g(M,X) as exemplified by

(4o3) in the previous chapter does not, in general, hold
here. Tn particular, usually we will have

D D j
0 D!2



65

Assumption 5o2.,I The convergence condition

fI 1711 < 1 in (h.h8) is satisfied; thus, the

control procedure engaged in by 011 and G

tends toward a state of equilibrium.

We can apply the results of Chapter III to get

the sequence of controlled input vectors which is optimal

from G 2 ,s viewpoint. This is (3.6), reproduced here for

convenience.

V 0 = (K K+E)-K(U-C)• (5.2)

The equilibrium olicies (Kl) e and (M2)e are found in Chapter

IV by replacing "ni by tte" in (4.18);

(ie= ( iKi1+Eli*)-iL_it2i*- i(mi)e], (5.3)

where

Dli 0 . 0

E 0 D li* co.o 0(5.4)Eli* .* 9; "

0 0

in accordance with earlier usage. Let

(!I)o . = [(K K+E ) -1K -I i (5.5)

denote the vector formed from the elements of 0o correspond-

ing to the controlled inputs under Glits cognizance. In

order for the equilibrium policies to agree with the optimal

over-all policy, we must have

(i)o = (id e  
t

Setting the right hand sides of (53) and (5-5) equal to
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each other, one gets, after a little algebra,

ii* :i+K i .i )e+(K i )-1(Ki Ki+Eli*)L(KK+E)- 'K

L±.-) (5.7)

Equation (5.6) specifies a rule* for G2 to follow in its

act of determining-the ,,ideal trajectories, U1* and U2* for

the lower level units. With these "distorted" ideal trajec-

tories, the equilibrium policies arrived at by G,1 and GI2

using the control procedure of Section h.h together determine

the optimal Policy.

Notice that G2 ,s rule for determining Ui , namely

(5.7), depends on the equilibrium value Wie. Because of

assumption 5.1.3, this is available to G2; the procedure for

finding it goes as follows:

1. The trajectory (X)0 under the optimal control

law is determined from (3.3) withM = Woo

*it is interesting to note the geometrical effect

of G2 Ts specification of ITi* according to (5.7). looking

back to (h.16) and (h17), it is easily seen that G2 is adjust-

ing the positions of the hyperplanes corresponding to the

individual equations of (4-16), so that they interact at
the oint represented by Ml)o' (H2)o °
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2. (X)o is partitioned into (XI) ° and (x2 )0.
Since these are also the trajectories deter-
mined by (4.1) and (4.2) under the equili-
brium policies, (Wi) e is determined from
(4.7);

(10 e = Lij (X.)0+2 1 (5.8)

The entire control procedure can now be envisaged

to occur as follows. * Before getting underway, i.e. prior

to t=O, G2 determines the ideal trajectories for Gil and G12

from (5.7). Then, as the process evolves as described in

section 4.4, the sequence of policies

(Mi) I , (Mi) 2 1 o"o (Mi) n I 0..' (5-9)

where Mi)n is applied from (n-l)T+(n-l) to nT+n, approaches

the limit (Mi)o, as given by (5.5). The optimal Dolicy for

the infinite-stage Drocess from G 2s viewpoint is, of course
(Mi)o, (_i)o, o.., (_Mi)o, ... , • (5.10)

Sequence (5°9) therefore represents an approximation to the

optimal (infinite-stage) policy.

*Again we remind the reader that our 2L3G system
is contrived to preserve the autonomy of G and G1 2; thus,

we do not allow in the systems under consideration here,
G2 to ,,tellm Gil and G12 the (Wi)e determined in (5.8).

Rather G2 is forced to allow them to arrive at (Wi)e with

no influence save Ui* according to (5.7).
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Let us examine the implication of the results of

this section in regard to section 4.5 of the previous chapter.

From that section, we can conclude, in the spirit of this

chapter, that if G 2 transmits Ui *-Wi instead of "distorting"

U i according to (5.7), then the equilibrium control actions

of the first level units will be suboptimal from G2ts view- -
point. Organizationally, this distortion represents a co-

ordinative action.

5.3 The Effects of Varying E

In this section we examine some aspects of allow-

ing G2 to adjust the elements of the matrix E li in

gli("i,Xi), as well as the ideal trajectories U*.

The abbreviations,
(5.11)

TITi = Ki(Ki'Ki+El i*)-El i*Lj K(K Kj+E *) IEi*Lj

vi : (K i ' i+Enj*)-] nli* 1 (5.12)

which are analogous to (h.30) and (4.31), are also made here.

We begin by proving two theorems:

Theorem 5.3.1. The characteristic roots of the

positive definite matrix (Ki, i+Eli*)-Eli* all

lie in the interval (0,1).

Proof. K l ,KiE lEi* is positive-definite, as we noted in

Chapter ITT; henceo its inverse and, as a result, the pro-

duct (K iK,+Eli*)-Eli is positive-definite. Therefore,ductli
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the characteristic roots of vi are all positive. We list

two theorems from Bellman(7 ) as lemmas:

Lemma 5.3.l. Let A and B be symmetric matrices,
with B positive definite. Then

PLk(A) < k(A-), k=l, 2, *.., N.

We remind the reader that tk(A) denotes the kth characteristic

root of A, and recall the convention stated earlier;

LN f VN-1 f ... L

Lemma 5.3.2. If a symmetric matrix A is non-

singular, the characteristic roots of A - 1 are
the reciprocals of the characteristic roots of

A. In particular, if A is positive definite,

l(A) = /N(A - ) .

Armed with these two lemmas, and noting that

-1 I Ei ) 'K

= I+(E *YlCi 'K , (5.13)

we see that the matrix on the left-hand side of (5.13) has

characteristic roots all greater than unity, hence the

characteristic roots of vi are all less than unity. This

concludes the proof of Theorem 5.3.1t

Theorem 5°3.2. Simultaneously increasing (de-
creasing) the elements of the positive definite
diagonal matrixE li* increases (decreases) 11vill.

A decrease is constrained so as to maintain the
positive definiteness of E1 i *.

proof. Denote the change in E.* by Eli*, which is also

positive definite. Then, the change from El* to

EI* + Eli* induces the change
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(Ki'I i)'-"Il l (Ki'Ki)_-Eli*+-(Ki'Ki)-I Eli*"- (5.14)

Consider the "t" sign in (5.14). From Lemma 5.3.1, clearly

the characteristic root relationship

pI (Ki'Ki)- 'E1 * t 4 1 (K 'Ki)-Eli*+(Kii)-l Bn

holds, which, from Lemma 5.3.2, yields

LN (Eli * . Ii*)_-Ki'Ki -, I (Eni*)-li'Ki'

so that

'N '+(Eli*  Eli*)-IKi'Ki '< 'N T+(Eli*)-I Ki'Ki"

Looking back at (5.13), and again utilizing Lemma 5.3.2$ we

have

pij(tri) = l (Ki'Ki+Eli*)1lEi*

P.1  (Eli*)lKiK+ I -l Ll (Eli*+ E li*)- l

-i
Ki' Ki +I

Ll (Ki'Ki+,Eli *  E l*)-l (Eli*+ Enli

The latter inequality, taken with the property that

I IAII = .l(A) if A is positive-definite (see Chapter ITI),

yields
JI (Ki tKi nl*) -"El* [I I (Ki'I i4 li* - Eli*) -

(Eui*+ Eli*) 11'

thus, we have demonstrated the theorem for the word "increase.1?

Now consider the "-" sign in (5o14). Note that, from Lemma

5.3.1 and the fact that El* remains positive definite after
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the change, that

Lk (E li*-AE li * ) <' k(Eli *-AEli*+Eli*) = t-k(E'li*).

Using this result, the proof for the word "decrease, is

exactly the same as for the word itincrease", except for the

reversal of the inequality at each step and a, before

a El The result is

S(Ki' I iEliI,-Eli )-(Eli*-;AEli*)

< [[(KitKi+Ell*)-'Eli 11 = 11= il,

completing the nroof of Theorem 5.3.2. We now proceed to

show how G2 can use its capability of maninulating the elements

of Eli* and El2* to assure convergence of the first-level

control process.

From (3.12), there exists a mathematical princi-

ple by which we can bound the contraction factor IIliTI in

(4.48) from above:

lIIiII < IlKill'IIrillIlILijil'IIKjll"'l~ijilllLjil .

(5.15)

By Theorem 5.3.1 the factors IiTriJI and Il~rjI[ in the right

hand side of (5.15) are both less than unity. Moreover, by

Theorem 5°3.2, G2 can adjust Ell* and E12* so as to make

these factors small enough to assure I lilli , i.e. to assure

that the sequence (5°9) converges. This is important, for

without convergence at the first level, there is no hope
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of G2 effecting any sort of near optimal control with (5.7).

2.h Summary

In the two previous sections we have examined

the relative effects of G2 varying the parameters Ui* and

Dli* in GliiS loss function (5 i). Tn general, we have seen

that Dli* affects the rate of convergence of the sequences

(5.9), (h.h9), (h50), and others, while Ui* determines the

limits of these sequences. Both of these variations deter-

mine how well the sequence (5.9) approximates the control

law. Notice that, whatever the choice* of Eli*, determina-

tion of U* according to (5.7) assures that the limit of the1

sequence (5.9) is (140 .

We point out the following rather obvious point:

Suppose G2,s control problem is to determine U.* and select2 d1

D li* from the set dI, where di lies in the interval (d oi

d i),doi>0, in such a way to cause the sequence (5.9) to

anproximate the optimal control sequence (5.10) as well as

possible. Then, d 0i is the proper choice for Dli* and

Hi* is then determined from (5.7) with

or, if Eli* is held constant
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d 01 0 .. 0

E 0 d'T .. 0

0 0 ... d 0i

This assures the most rapid convergence of (5.9) to its limit

(because of the method of choosing Ui*), the vector

Appendix D consists of a description of a numerical example

of how a variation in D of this type effects Iii .



CHAPTER VI

SELF-ORGANIZATIONAL ASPECTS OF 2L3G SYSTEMS

6,1 Ordering Relations on Structure Space

In this chapter, we develop an ordering rela-

tion over a subset of the structures of the 2L3G controller

which was studied in the previous chapter. The ordering

relation will be linked with the following control problem,

stated earlier in Chapter IT; "Given a dynamical system

(X)nl =[a (X)n (6.1)

where the ransformation Qa depends on the structure and has

a contraction factor a, find the structure such that, given

an initial value (X)I, the system reaches equilibrium in the

shortest possible time." The contraction factor a of Qal

when associated with the element of the structure set which

induces Qa, yields a numerical measure of that structure.

According to the control problem stated above and the earlier

discussion (Chapter IT) on contraction mappings, the smaller

this a, the greater the effectiveness of the controller

structure. This relationship between the value of the con-

traction factor and the effectiveness of the structure allows

us to rank each element of the structure set according to the

associated numerical value of a.

74
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The criterion for choosing an element of the

structure set will be based on the rate of convergence of the

first-level control procedures of sections 4.3 and 4.h. In

section 5.3, we showed the dependence of this convergence

rate on the matrix parameter Dli* of Glis loss function (5.1);

thus, we impose

Assumption 6.1.1. The matrix parameters Dll

and D 12* in the first level units, loss func-

tions will be held constant.*

This assumption will allow us to study the effects of struc-

tural changes alone on the rate of convergence.

As in Chapters IV and V, i=l, 2, j=l, 2, and

i~j. Also in addition to the above assumption, Assumptions

5.l1 through 5.l.4 hold throughout this chapter.

6.2 Controller Structure and Structural Change

Let us recall the statements of the control

problems of the 2L3G system of the previous chapter-

i. G,,- tDetermine M i so as to minimize (5.1)

subject to (4-36)."

fAlthough, as we pointed out in a footnote in
Chapter V, in general

D 1 1 * 01 *

0 D 12J

Organizationally, Gli may attach different fweights" between

the elements of mi(t) than does G2.
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2. G2: "Determine the sequences U and U2

which will cause Gil and G12 to determine

M so as to minimize (3.2) subject to (3.1)."

When the control problems stated above are considered collect-

ively, they characterize the organizational structure of the

controller in the sense of section 1lo. We now state-

Definition 6.2.1. A member of the set of
structures considered here is an identical
allocation of the elements* of x(t), m(t)
and z(t) to the control problems of G7and

G12 stated above. With each member of the

structure set we can associate a "selector
vector", & = [6, 62, ..., d s  t, which

specifies how this allocation is made as
follows:
6k=i; i=l, 2, k=l, 2, ... , s if x (t),
mk(t), and zk(t) are under the cognizance

of Gli.

* .(17)
Mesarovic defines '?systems structure" as the

set of relationships which, together with the system's terms
(i.e. state variables, coefficients, etc.), define the system.
If we introduce the set of relationships [rhkj, where .xh(t)

rhk xk(t)" means nxh(t) and xk(t) are under the cognizance

of the same/different (whichever is auoropriate under that
particular allocation) first level goal-seeking element,ft then
it is clear that every allocation of elements to G and GIl
determines a unique set of relationshios [rhk . oife se I hk]
is, of course, only a subset of the total number of relation-
ships between the terms. For example, in addition to [rhkj

there are the relationships ,,=1,, ,+19, etc., included in (4.l)
and (h.2).

'*A slight conceptual difficulty arises from the

fact that in (h.36), zi(tl ) was lumped, along with Aijxj(t),

into wi(t+l). However, the control process of section 4.h is

identical whether G is allowed specific knowledge of Zi(t)
or not.
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Henceforth, we will refer to an allocation of

the elements of x(t) only; within the framework of the control

problem considered here, this induces a similar allocation of

m(t) and z(t) by way of the partitioning of (3.1) into (h.l)

and (4.2).

Definition 6.2.2. A change in organizational
structure is simply a change in the allocation; *
this induces a transformation on the selector
vector.

For example, a "change of structure? would occur if, say,

xk(t) were somehow moved from G11?s cognizance to G12 ,s; this

would cause a change of the control functions of all the goal-

seeking elements, although the 2L3G system configuration remains

the same. G2 would transmit uk*(t) to G1 2 instead of Gll, and

G would no longer be concerned with monitoring xk(t) or

making the adjustment mk(t); these would be performed by G1 2 .

This particular change would induce the transformation 1-->2

on o k' the other elements of d remaining unchanged°

*Which induces a change in the set of relation-
ships [rh9. Structural changes which would alter the.

mathematical relationships, such as replacing "=It by "n,
are not considered. Neither are changes in configuration
where, say, one of the first level goal-seeking elements are
removed.
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Consider a change of the type

(6 k1, --2)--m(okk d=1); (6.2)

i.e. "change xk(t) from xl(t) to x2 (t), and change x p(t) from

x 2(t) to x1 (t).* This also causes similar changes between

the control input vectors rm(t) and 4(t), the disturbance

vectors z1 (t) and z2 (t), and the ideal trajectories L,*(t) and

u2*(t). This change induces a row-column interchange in the

matrix A as well:

all .. alk " alp .. aI s

a ' i :.
aki ... akk "2. ak ... ak

a1. a .k a ... ap
a l apk app aps

a s .a 9 a

asl .. ask ... asp ... ass

(a11 1 .. (a .. (alkl (a1)
(pl kl'" (pp)kk"l "(pk kp"* '(ps)ks

I SH

-- 4' I - - . 9' -

(as~s"" (sp) sk• i(sk s " . (as1 )s1

The heavy dashed lines indicate the partitioning of A induced

by the controller structure. The subscripts inside (outside)

the parentheses indicate position in the matrix before (after)

the change. There is, therefore, an interchange of elements
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between the matrices All, A1 2, A21, and A22 as a result of

the change in controller structure indicated by (6.2). For

example, in A12' the ph column is transformed as

a lp alk I

a a 1

Sl'p l k

andth kthrow suffers the transition

(akSll ak,sl+2 .* ak, )----- ap~sl1l ap,sl+2 °t" aps),

where s i is the number of elements in xS i(t). We now proceed

to indicate how a structural change such as the one described

above affects the contraction factor I Iilj of themapn

(4.48) associated with the first-level control procedure of

section 4.4.

6.3 Ervaluation of the Effects of a Change in Structure

In this section, we shall discuss the dependence

of the transformation Qa in (6.1) on the structure under which

the controller is operating.

Note that l lIIijj in (4o48) is the norm of a pro-

duct of several matrices (see 4.30), each of which is altered

by a structural change. Looking back to the upper bound of

11TIil1 established by (5-15), we see that a reasonable
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starting point of the analysis of this section is to examine j
how changes in Ki, Ki affect 11vill, where fi is given by

(5.12); thus, we prove the three theorems: C

Theorem 6.3.1

IIEli*II 11sI I (Kit Ki EE*)- n* l
JjIKiKil I+I Eli* 1 1

Proof. From (3.12),

IIE li = II (Ki'Ki+Eii*) (Ki'Ki+Eli*)- lE* I

( IKiiI+IIEli*lI) II(KiIKi+Eli*)- 1 li *11,

from which Theorem 6.3.1 follows.

Theorem 6.3.2 If the elements of E are
identical, and equal to eli*, thenli

* *el (6.3

I (Ki' Ki+Eli*)-Ei*lI = li l Ki(6.3)

Proof:- Let P be an orthogonal matrix such that

K K =P L PN0

VN

Thei according to Bellman
(7 )

( i KIEi *)-3Eli* (K(i 'K+el T )-le li*T

P (2 *)-le ii

+e(il+eli-1 eli*j
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The diagonal elements in the matrix immediately above are

the characteristic roots of (KiKi+Eli*) Eli*, so the

theorem follows immediately from property (3.17).

Theorem 6.3.3 An increase (decrease) in the

smallest characteristic root of (Eli*)-Ki rKi

results in a decrease (increase) in

I I I
Proof: Let P be an orthogonal matrix such that

LK
L2 0

(Eli*)-Ki Ki = P 0 P'"

As in the proof of Theorem 6.3.2,

'+(E KiwKi = P 0 " iNJ PI

so, an increase (decrease)in

Lemma 50.2 and equation (5.13), a decrease (increase) in

PlI (Ki'Ki+Eli*)-li*I = H (KiKi Eli*) -El i*I I = I ui1 '

Q -E.D.

In the previous section, the manner in which a

structural change induced a reshuffling of the elements of

A between All, A1 2 , A2 1 , and A2 2 was examined. Recalling
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the definitions of Ki and Lij, we see that a structural

change would alter the elements of these matrices, with a

subsequent change in the scalars IIKiII and IlLijl. Also,

from the theorems proved immediately above,* the resulting

change in Ki'Ki affects the number ITriII. Therefore, the

factors in the upper bound (5.15) of lITTill all change when

the structure is altered. Theorem 6.3.1 illustrated how a

decrease in IlIKlKii l l forces a lower bound of I irill to

increase. Although the inequality expressed by Theorem

6.3.1 is somewhat weak, it illustrates that decreasing

IK I'Kil should be avoided if one were attempting to decrease

I I Ti I I

Theorem 6.3.2 gives us sore insight as to how

IIiil varies with changes in the minimum characteristic

root of KirK i. Because of the relationship expressed by

Lemma 5.3,l, Theorem 6.3.2 can be of value in studying the

effects of structural changes on I Iill. Theorems 6.3.2,

5.3.1, and 5.3.2 enforce the intuitive notion that positive

definite matrices are generalizations of positive numbers.

Carrying this intuition a little farther, we can examine

*and the fact that pN(KiKi) is equal to IKiTKil,

the determinant of KiKi, hence is a function of all the

elements in KiK i.
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(4.30) and (5.15) and conclude that, if it were possible to

effect a structural change which would cause only a "slight"

change in the produce 11K1 11'11K 2 11.I11L 12 1I-t1L 2 1 11 while

increasing IlKitKilI considerably, this would be a "change for

the better," as it would tend to decrease Ilrill and hence

an upper bound of 1Iii I.4.

Theorem 6.3.3 is an attempt to resolve the appar-

ent narrow application of Theorem 6.3.2, due to the requirement

that all the diagonal elements of E li* are identical. These

two theorems therefore complement each other, Theorem 6.3.2

giving an insight as to the numerical behavior of 1llr I as

N (KiKi) varies, and Theorem 6.3.3 providing the generality

to make this insight useful.

While it is possible to numerically determine

the effects of the changes in the factors in the upper of

IHIIIiI expressed by (5.15), it is more fruitful to calculate

I ITTJ directly when the computer is resorted to, since this

only involves the computation of one maximum characteristic

root instead of the six necessary to determine the right-hand

side of (5.15).

In Chapter IV, we found the mapning between

(Ii) n and (10n+2 and the conditions under which this mapping
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is a contraction mapping, namely 11ITilj<1. The following

theorem allows us to easily determine the contraction factor

for the mapning between (X)n and (X)n+2' the over-all system

state trajectories over the nth and (n 2)Lh T-stage control

periods, respectively, once 1117 11t and ITT21 I are known.

Theorem 6.3.4 The contraction factor a of the
mapingbetween (X) n and (X)n+2 induced by the 1
iterative procedures between G and GI2 described

in sections 4.3 and 4.4 is equal to the maximum I
of the contraction factors 11IT1l1 and 1,1211 of

the mapoings between (Xi)nand (Xi)n+2 for

i=l, 2, respectively.

Proof: Let

~i°j t

From (3.15),

iiril[ = [1(iIi)]/2

Let Qi be an orthogonal matrix such that

Kl 0
IIi'IIi Qi 2

0 s iT

then

IT 111

0 1
2'12
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SS(iI' IIl 0-

I 0 

' 0

whQ ((II2' 12) Q2
0 "

'Ps 2T(1,2,112) (6.4)

whereJ

[01 '2j
is also an orthegonal matrix. Looking at (6.4) it is easy

to see that

a =IIIIII = [ l(IItII)j 1/2 = max [pl(I~lIIl)1/2, l(I 2 II 2 ) 1/29

from which the theorem follows.

Theorem 6.3.4 is convenient from a computational

viewpoint, since it allows us to use the smaller matrices II.

in the maximum characteristic root algorithm(I0 ) instead of

the full-size matrix II. Also, the factors !ITIi I are of

interest; after these are obtained, because of Theorem 6.3.4,

no additional computing is required to obtain the ,over-all,

contraction factor.

The control procedure for the 2L3G system under

study here is reviewed at this point: an iterative procedure

is induced by the ,interplayt, between GIl and G1 2. if

I11iII , this procedure converges in such a manner so that
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the "equilibrium control actions" of Gil and GI2 are optimal

from G2 ,s viewpoint. This is accomolished through G2 ,s

"influence'? via adjustment of the parameters Li*(t) in Gi's

loss function according to (5.7). Ideally, G2 ,s optimal state

trajectory would be

(x)o, Mxo, Mxo, ..., (6.5)

where (X) is the T-stage sequence of state variables under

the optimal control law (M)0 , obtained from (3.6). However,

the state trajectory under the collective control action

exerted by G1 1 and G12 turns out to be

(1)1 ,  (1)2 , (1)3 ,' .. (6.6)

a sequence whose limit, due to G2 ,s influence, is (X)o. The

faster (6.6) converges, the better (6.6) approximates (6.5).

Theorem 6.3.4 and equation (4.30) allow us to compute the

contraction factor of (6.6) for a specific element of the

structure set, i.e. allocation of state variables between

G and G1 2.

Suppose two different structures were being com-

pared. Further, assume that the contraction factor 111111 is

smaller for one structure than for the other. Then, clearly

we could classify that structure with the smaller 111111 as

the "better" of the two, since (6.6) would converge faster

when the 2L3G system was operating under that structural
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configuration, resulting in a better approximation to (6.5).

The next section is concerned with a specific

example illustrating the variation of 1uiil as the structure

is changed.

6.4 Self-Organizational Aspects

In this section, we make

Assumption 6.4.1. The second level goal-seeking
element G2 in the 2L3G system under study here

has the capability to change the structure of the
controller within the framework specified by
Definition 6.2.2, in addition to the capability
of setting ui*(t) in Glivs loss function.

This assumption and the remarks made previously in this chap-

ter compose the formulation of a "structural choice" control

problem for G2, similar to the one stated at the beginning of

this chapter. For every element of the structure set, the

2L3G control procedure described in the previous section

holds. No matter what structure the 2L3G system operates

under, the sequence (6.6) converges to (X) o . This is due to

the capability of G2 to manipulate ai*(t), which it does ac-

cording to (5.7); thus, under any structural configuration the

limit point of (6.6) is (X)o. We now make

Conjecture 6.4.1. For the 2L3G system studied
here, there is a different value of 11Tll, the
contraction factor of the mapping between
(X)n and (_) n+2 induced by the 2L3G control
procedure, for each element of the structure
set considered.
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We state this as a conjecture rather than a theorem because

of the immensely cumbersome algebra* associated with the

proof of the statement. We cite the remarks of the previous

section as evidence as to the plausibility of conjecture

6.4.1. Operationally, this conjecture can be proven true

or false for any special case of the system studied here, by

numerically evaluating j lIII for every possible structure.

For example, let

1 2 3 4 1
3 4 2 1 1

A 2 1 4 3 3 (6.7)
1 1 1 6 2

2 8 2 3 8 -
in (3.1) and DI*-I and DI2*-I in (5.1). Consider -.he (5)=10

111 622

possible structures with two state variables in xl(t) and

three state variables in 2(t). Table VI-1 shows the results

of a computation using the definitions of Ki and I implicit

in (4.6) and (4.7), (4.30), (5-4) and Theorem 6.3.4. In this

example, T=3. It is seen that only four of the ten structures

would be considered 1,feasible" i.e. have 111ii1<1, for the

*For the norm considered here, one would have to

determine Vl(I~ifli) as a function of the elemnts of yl, W2,K1,

2,L12., and L21 multiplied together in the appropriate order.
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assumed values of D li*. These are structures 3, 7, 9, and

10.

TABLE VT-1

structure selector vector II I
1 (1 1 2 2 2) 1;879
2 (1 2 1 2 2) 1.026

3 (1 2 2 1 2) .935
4 (1 2 2 2 1) 1 432
5 (2 1 1 2 2) 14'251

6 (2 1 2 1 2) 1.376

7 (2 1 2 2 1) .692

8 (2 2 1 1 2) 1331

9 (2 2 1 2 1) .846

10 (2 2 2 1 1) .808

We will classify G2 ,s choice of a structure for the 2L3G

system as Itself-organizational activity." One type of self-

organizational activity is for G2 to determine a table similar

to Table VI-l; then, if Conjecture 6.4.1 is found to hold,

select that structure for -which IIiII is a minimum.

It is interesting to note, from (h.30), that

I ITi is independent of the uncontrollable variables U and

Z. Consider the following situationg our 2L3G controller,

concerned with guiding the causal subsystem so as to minimize

(3.2) over each time period subject to (3.1) with A given by

(6.7), has carried out the control procedure outlined in the

previous section with the additional act by G2 of determining

the "best" structure from Table V-l. As the process evolves,
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(6.6) tends toward its limit (X), at the fastest rate possible

within the restrictions imposed by the structure set consider-

ed- The effect of an alternation* in U or Z is to change the

optimal control law (see (3.6) ), with a resulting shift in

the "influences" U1 and U2* (according to (5.7) ) and the

equilibrium policies arrived at by Gl and G.2,under these

influences. However, no Itreorganization., i.e. structural

change by G2, is necessary, because of the functional inde-

pendence of hIull on U and Z. When a change in U or Z occurs,

we can imagine t as being set equal to zero with the control

procedure in question starting over from the beginning, with

the exception that G2 need not redetermine the optimal

structure. The rate of convergence towards equilibrium,

therefore, remains the same.

Suppose instead that the elements of the matrix

A are subject to change, this change being imnediately de-

tectable by G Then G2 is forced to re-examine the contrac-

tion factor for all possible structures. A specific example

serves to illustrate this point. Suppose, in (6.7), a52 and

*Organizationally, a change in the ideal trajectory

U might be termed a change in the objectives of the organiza-
tion, while a change in Z would correspond to an environmental
alteration.
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a55 are abruptly changed from 8 to h. Table VT-2 shows the

results of a computation similar to the one that led to

Table VI-1. According to these tables, G2 should leave x2(t)

under G 12s control and shift each of the other state vari-

ables* from its existing structural location to the alternate

TABLE VT-2

structure IlT II
1 1446
2 835
3 * 773
4 1.473
5 1.235
6 1;182
7 .912
8 1,225
9 5795

10 .817

one. After this structural change is effected, the control

procedure evolves exactly as before. From the researcherts

viewpoint, this activity appears as teleological self-organi-

zation; the structural configuration of the 2L3G controller

is altered in response to a change in A in order to insure

that (6.6) continues to approximate (6.5) as well as possible.

The structure choice problem stated in section 6.1 is solved,

*The change from structure 7 to structure 9 might
be more plausible if a 19costw is associated with each altera-
tion0  This would involve Gil and G12 ntrading" x2(t) and

x3(t) only.



92

since that structure which causes (6.6) to be the best

approximation to (6.5) is also that structure that brings

the system into equilibrium as quickly as possible.

One more example serves to illustrate these ideas

further. Organizationally, this might be termed "reorganizing

after a merger." Consider

3 2 .

A 1 2 4 3 (6.8)

1116

in (3.1), and suppose G and G1 2 each control two state

variables. Table VI-3 indicates that Gil should control

x2(t) and x4(t). It is interesting to note that, for an

TABLE VI-3

structure selector vector IIIIH

1 (1 1 2 2) io6
2 (2 1 2 1) .690
3 (1 2 2 1) .959

even number of state variables, in this case four, it is

necessary to consider only (1/2)(2) possible structures,

since nothing is gained by calculating, say, uhII for

(2 2 1 1). To continue, suppose xs(t) is added to the state

vector, its interactions with the other four state variables

and itself being determined by the fifth row and column of
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A in (6.7). Table VI-I indicates that G1 2 should take over

xh(t) from Gll and the latter should incorporate xs(t) into

its bailiwick.

65 Self-organizational Activity from the State-Transition
(6 )

Viewpoint

In Appendix C we derive the dynamic programming

solution of the control problem of Chapter MFT. This solution

is numerically equivalent to that given by (3.6), but the

philosophy of implementation is somewhat different. While

(3.6) yields the sequence of control actions "all at once,,

so that these actions are known before the process begins,

the dynamic programming solution yields a formula of the type

m(t+l) = mi(t),u(t),z(t+l]J ; (6.9)

thus, from the state-transition viewpoint, the control actions

are not determined until the information on x(t) is known,

i.e. immediately before the action is to be taken. The

advantage of the dynamic programming solution was mentioned

in section 3°5°

We now prove

Theorem 6.5.1 Let a mapping from p to q be
defined by

q = , (6.10)
where B is a non-singular matrix.
Then a necessary condition for (6.10) to be
a contraction mapping is IIBIIl.
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Proof: If (6.10) is a contraction mapping, for two points

l and p<

IIBH lIIPl-P211 f II _1 _2II = 11ql-q2,tI IIP-P 2 11 ,

hence

IIBII I1

Q.E.D. Theorem 6.5.1 can be thought of as a companion

theorem to Theorem 4.4.1 for linear mappings, since the two

assert that I IBI - is a necessary and sufficient condition

for (6.10) to be a contraction mapping.

Suppose that T, the number of state transitions

in each period, is large enough so that G2 cannot apply (3.6)

and (5.7), nor compute 1uiill as indicated in the previous

section, all because of the large size of the matrices in

these formulas. Assume G2 selects a specific structure.

Appendix E consists of a derivation of the dynamic programming

analogue of (5.7), which G2 applies to arrive at Ui, the

sequence ui*(1), ui*( 2 ), ... , ui*(T) , This is transmitted

to Gli Then, the iterative procedure progresses as before

except that Gil and G12 use the dynamic programming solution

of Appendix C instead of the numerically equivalent (4.4l).

Now, since G2 was unable to compute 1 III for the particular

structure selected, it must attempt to determine it from the

state variable sequences. After five control periods have
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elapsed, 2 can determine II(X)1-(X) 311 and "I(X)3-(X)5' by

(3.9). Because of Theorem 6.5.1, assuming G2 is aware that

the mapping induced by the control procedure is of the type

(6.10), G2 need only compare II(X)1-(X) 3 11 with 'I)3-(X)5"

to determine whether or not the chosen structure is Iffeasible.,

i.e. has an associated li[ilt less than unity. Moreover, if

G2 repeats this process for every structure, it can determine

the .optimal, structure as the one for which

fi(x)3-(x)5'1 (6.11)
l l(X)l-(X)311

is a minimum.

From the state-transition viewpoint, the self-

organizational activity of the 2L3G system is more like our

intuition tells us it should be. G2 selects a structure, the

process begins, and if (6.11) is greater than unity, G2 effects

a "re-organization" and the control procedure starts over from

scratch. If (6.11) is less than unity, G2 can be assured

that (6.6) will converge to (X)0, although G2 may try other

structures in an attempt to speed up this convergence.

It is important enough to note again that we have

assumed that G is aware that a linear mapping of the type

(6.10) is induced by the control procedure under considera-

tion. Without this knowledge, no conclusion could be drawn
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from the numerical value of (6.11).

6.6 Applications in Organization Theory

The general problem to which .classicall, organi-

zation theory addresses itself is the followingl(22)

Given a general purpose for an organization, we
can identifythe unit tasks necessary to achieve
that purpose. The problem is to grouD these
tasks into individual jobs, to group the jobs
into administrative units, to group the units
into larger units, and finally to establish the
top level departments-and to make these group-
ings in such a way as to minimize the total cost
of carrying out all the activities.

In order to formulate an abstract model of an organization,

then, according to the above statement, there must be some

measure of the effectiveness of any organizational design.

This amounts to an ordering relation over the structure set.

For example, the "assignment problem", so familiar to opera-

tions researchers, gives such a measure. In this thesis, we

have proposed another such measure and demonstrated its

feasibility by applying it to a special case.

Any normative theory of organizational behavior

must include some self-organizational capability, since, as

we mentioned in Chapter I, reorganization is a common method
(2)

of attacking organizational inefficiency. The theory of

multi-level, multi-goal systems(1 7,18) is ideally suited to

model this type of activity. In a real organization, the
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11bosses'l impose organizational changes on their subordinates.

In mLnG systems theory, this is represented as we have done in

Assumption 6.h.1, by allowing higher level units the capability

of re-allocating tasks among the first level units,

we mut agre wit -l(7)

in conclusion, we must agree with Mesarovic,(

that a mLnG system is the closest that general systems

theory can come to offering an abstract model of an organiza-

tion. This is reinforced if Churchman's (8 ) "characteristic

(b)1' of an organization,

at any moment of time the organization is
pursuing a set of goals,

is accepted.



CHAPTER VII

SUWA1d AND CONCLUSIONS

7.1 Summary

In this investigation we have been concerned

with formulating a particular general allocation problem and

solving it for an important special case. The problem con-

cerns the allocation of tasks among several interrelated

goal-oriented control units which are collectively concerned

with controlling a causal subsystem so as to achieve some

over-all purpose. Some of these control units, in order to

compensate for their being unaware of a portion of the entire

system and exerting an effect on only a portion of it, employ

a form of adaptive behavior in arriving at their control

actions. It is postulated, in the general case, that the

time it takes for this adaptive process to reach an equili-

brium state, if at all, is a function of the manner in which

the tasks are allocated among the control units, i.e. the

"organizational structure" of this collection of units. It

is argued that, if this is true, the rate of adaptation is

a good measure of the effectiveness of the organizational

structure, which yields a method of ranking the members of

the structure set. One structure is termed *better" than

another if the first exhibits a higher adaptation rate than

the second.

98
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With an ordering relation over the set of struc-

tures, such as the one proposed in this thesis, it is a

simple matter conceptually to select the t.best. structure 'from

the set. If we allow one of the control units within the

system the capability to select the structure, the entire

system, when viewed from the outside, exhibits what we have

termed oself-organizational" activity; the system changes its

own structure in attempting to increase its rate of adaptation.

One characteristic of real organizations is their

ability to reorganize themselves. This is accomplished in

the manner indicated above; a sub-unit, usually termed a

"manager" or "control group", (2 ) carries out the allocation

and re-allocation of tasks. For this reason, we have argued

that mathematical models of organizations must have some

self-organizational features.

7.2 Conclusions and Future Research

The latter part of this thesis, Chapters III

through VI, is concerned with developing the ideas summar-

ized in the previous section for a linear discrete-dynamic

system with a quadratic loss function. We conclude, there-

fore, that these results are applicable in this case. This

part of the thesis also demonstrates that it is possible to

construct mathematical self-organizing systems which display
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a number of conceptual similarities to the intuitive notion

of an organization.

The model of organizational behavior developed

in this thesis might more properly'be termed a "simulation."

We have tried to imitate some intuitive conceptions of

organizational behavior rather than predict how a "real-

world" organization would operate.* In particular, the idea

that organizational stability depends on organizational

structure, as qualitatively argued by Dubin,(12) is nicely

represented in our model.

The idea of applying feedback control theory or

"systems analysis" in the study of organizations(20) is not

new. However, most of the models involved in these studies

are LG systems, so that there is a lack of an appropriate

description of the structure. In the theory of mLnG systems,

however, any organizational structure could be modelled.

*The reader may object to our representing groups
of humans by "goal-seeking elements." However, at least one

eminent management scientist(l) warns that complete rejection
by organization theorists of the "mechanical models" of humans
precludes the application of many of the recent developments

in the information and communication sciences to organization
theory.
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The simole 2L3G system we have studied illustrates the idea

of "influence* or "indirect control"t, i.e. where the higher

level unit adjusts parameters in the performance function

of units below it. This idea has also been investigated by

Ackoff(1 ) from the viewpoint of decision theory.

Investigations into mLnG systems with m>2 would

be valuable. In particular, this introduces "middle manage-

ment, goal-seeking elements which indirectly control the

causal subsystem while, at the same time, being subjected to

control from above. Any self-organizational activity by the

top-level unit would then create an entirely new system from

the mid-level units? viewpoint. The latter would then be

forced to embark upon a self-organizing program of its own,

and so on down the line, Models such as these are quite

complex, and will require a computer with a large memory to

calculate the many contraction factors at the different levels.

in addition, "up-and-down" mappings (mentioned briefly in

section 2°4) might need to be introduced for mLnG systems with

m2, since the mid-level units will not be able to determine

(O)e by a procedure such as the one described in section

5.2° For, these units will normally not have complete know-

ledge of the system.
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It would be interesting to study some special

cases involving non-linear causal subsystems. Reticulation

of multi-variable non-linear systems will most certainly have

to be studied numerically. Convergence to equilibrium in the

manner that we have used it would probably occur only in

certain regions, if at all.

Needless to say, we have only scratched the sur-

face of the theory of multi-level, multi-goal and self-

organizing systems.
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APPENDIX A

EXPRESSION OF x(k) IN TERMS OF THE INITIAL STATES

AND SUBSEQUENT CONTROL ACTIONS

Given the system S obeying

_ (t~l) = Ax_(t)4(t~l)t l) t=O, ,.. T-1j,

X(O)-c,

where z(l), z(2), .o., z(T) is a known sequence of vectors, we

can write

x( = A cz1)m1 (A.i

x(2) = Ax(l) z(2)m(2)

=A 2 cA[zj(1)+n(1)J 4+z(2)4+m(2)

Assume

x(k) = Akc+ E, AkiB(i)+m(i)I (A.2)

j=l

Then

x(k+l) = Ax(k)+z(k+l)+m(k+l)

= A k 4. k kA-j [])+rn(j +z(kl) m(k+l)
" j=l L-,

k+l

Ak+l C+ =Z k+l-j r.c- J=l A l z(j)+m(j)

hence, (A.2) holds by induction (it is true for kl from

(A.1)),
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APPENDIX B

DIFFERENTIATION OF QUADRATIC AND LINEAR FORMS

WITH RESPECT TO VECTORS

Given the quadratic form
n

g(m) rmAm =D aij m im
SJ=l

where
m 1

m

m
n

and A is a symmetric matrix, we make the following definition:

am,

dg

am

thu s, __

n
2. F ajm

2pa m

n
dg = j=l a2jms
d.j =2Am.

n
2 L a mJ=l n

n
Also, for f(m)=cm= cim i, the same definition yields

-- i=l
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df _2

of Cn

nm

For more complicated forms of the type;

g(m) = (Am+c)' (Amtc)

mAtAmcAm+mAc+c'c

we notice that c'Am = m'A'c, so

g(m) = m'A'Am+2cfAm+cqc (B.1)

and, using the above derivations,

0g = 2A'Am+2A'c = 2A' (Am+c). (B.2)
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APPENDIX C

THE DYNAMIC PROGRAMMING SOLUTION OF THE CONTROL PROBLEM

OF CHAPT III

In ChapterIl we encounter the following problem:

"minimize
T _T

t=l- ---- t=l (C. 1)

subject to the constraint

x(t+l) = Ax(t )4m(t~l)- z(t~l), (C.2 )

for t=O, 1, ... , T'-1, with initial conditions x(O)=c."

The vector sequences u(l), u(2), ... , u(T) and z(l), z(2)

.. , z(T) are deterministic, and the matrix D is positive

definite and diagonal.

Because of the Markovian property of the system

(C.2) and the loss function (C.1) we can apply Bellman's

principle of optimality to get

F(N+l, c) = min E F-(-~-~1c--uT-.N-l ~
m

+m'IDm+F NAc _+mz(T-N i , (C.3)

where F(N,c) denotes the minimum possible contribution to the

loss function if the system is in state c and N decisions or

selections of m(t) remain in the process.

Assume F(N,c) can be expressed in the following

form (note, I denotes transposition):
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F(N c) = 2'R (N)cR-2Pj'(N).a+V(N) (C -4)

where R(N) is a positive definite matrix, P(N) is a vector,

and V(N) is a scalar) in particular,

F(O,c) =' -~u(T I [ -(T

so that

From (C-3) and (c-4),

F(N+l,c) =mint cc-2u, _TN1)S2 _ _l~(-N1

mvDm+[lAc+z(T-N)+i 'R(N) [Ac4z(T-N)+m]

-2P' (N) [iAc~m~z(T-N i+V(N)]~.( 7)

To find the stationary point of the expression in

{Jdifferentiate it and set it equal to 0:

2Dm42R(N)m2R(N)[Aa4 2(T-Ni j-2P(N) =2

so

rn +R(N~Vfl (N) -R (N) A C+(T -N~ fl (C .8)

Substitution of m as given by (C.8) yields, after a few

algebraic manipulations,

F (N+l, C) = 2v T+A z R(N )-R (N) [+(N]' R (NYflA) c

-2(H(T-N-l).AL-R (N) [D4(N] )1 2:L(N )-R (N)Z(- 5

-?zt#(T-N) (T-R (N)LD+R(NUV 1 P(N)
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Now, repeating the assumption made to get (c.4) for N+l

instead of N,

F(N+l,c) = ctR(N+I)c-2P' (N+I)a+V(N+l) ° (C.10)

Comparison of (C.10) and (C.9) yields the recursion relations

R( )=I4A'fI-R(N)[D4R(Nf]1JR(N)A (C.11)

E(N+l) = u(T-N-1)+A? -_ 1( [(N)-R(N)(T-N

V(N+l) = t (T-N-l)u(T-N.1)-tt (N) LDR(N )j tP(N)

-RT)ER (NB 1 R(N)z(T-N)+VN) ) (C.13)

The method of obtaining the optimal policy is-

(1) from (C.6), R(o)-1, P(O)Li(T)o

(2) calculate R(N) and P(N) for N=, 2, .. o,

T-1 using the startTng values obtained in
(1) and the recursion relations (C.11) and

(c.12).

(3) From (C.8), we see the optimal policy is,
for N=T-I, T-2, o-o, O,
m(T-N )=[+R (N -lp P(N)-R (N)E x(T-N-I)

sin e (C-8)) is good for any value of the
state vector, in particular, the one re-
sulting from applying optimal control up
to that point.

The minimum value of the loss function can be

found by carrying along V(N) in the recursive procedure in

step (2) above. This is simply



Ami =MI (1)Drn(l)+FJI-1, AC+Z(1)4M(173

-2= m(T 1)[(1)1 V(-1

The above arguments are similar to those used by Adorno.(h
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APPENDIX D

EFFECT OF VARIATION OF DI* AND DI2* ON jI lijI

Let A be given by (6.7), and let

Dli*= di

for i=l, 2, and T=3. Figure D-1 shows the results of

evaluating iIIll and IITT211 as a function of d, when

Figure D-I.

- .

1., "II ....

./

*1

/d
I I I I I 7 9 11 2 3 h 5 6 7 8 9 10d
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APPENDIX E

THE DYNAMIC PROGRAMMING EQUIVALENT OF (5.7)

From (C.8), in order for G l to choose its portion

of the optimal over-all policy, we must have

[+(N)I-l fP(N)-RN)(A.4 T-Nu)] ~

where, in the left hand term, the subscript i denotes that

these are the elements of the optimal controlled input vector

corresponding to the state variables under Glis cognizance.

G2 has determined (Wi)e, i.e. ie(1 ), wie(2), .4o, ie (T) in

the manner indicated in section 5.2:, thus, from (Eol) we

can solve for (N), and obtain a formula for u *(T-N) from

(C.12), with appropriate subscripts and z(T-N) replaced by

!r e(T-N)-


